

Bachelor of Computer Application

(B.C.A.)

Principles of Programming & Algorithm

Semester-I

Author- Poonam Ponde

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Semester 1
Principles of Programming & Algorithms

Learning Objectives
- Elucidate the basic architecture and functionalities of a computer
- Apply programming constructs of C language to solve the real-world problems
- Explore user-defined data structures like arrays, structures and pointers in implementing

solutions to problems
- Design and Develop Solutions to problems using structured programming constructs such

as functions and procedures

UNIT-I
Introduction to „C‟ Language History, Structures of ‗Programming, Function as building blocks.
Language Fundamentals Character set, C Tokens, Keywords, Identifiers, Variables, Constant,
Data Types, Comments.
UNIT-II
Operators Types of operators, Precedence and Associativity, Expression, Statement and types of
statements Build in Operators and function Console based I/O and related built in I/O function:
printf(), scanf(), getch(), getchar(), putchar(); Concept of header files, Preprocessor directives:
#include, #define. Control structures Decision making structures.
UNIT-III Introduction to problem solving Concept: problem solving, Problem solving techniques
(Trail & Error, Brain Stroming, Divide & Conquer) Steps in problem solving (Define Problem,
Analyze Problem, Explore Solution) Algorithms and Flowcharts (Definitions, Symbols),
Characteristics of an algorithm Conditionals in pseudo-code, Loops in pseudo code Time
complexity: Big-Oh notation, efficiency Simple Examples: Algorithms and flowcharts (Real Life
Examples)
UNIT-IV
Simple Arithmetic Problems Addition / Multiplication of integers, Determining if a number is +ve
/ -ve / even / odd, Maximum of 2 numbers, 3 numbers, Sum of first n numbers, given n numbers,
Integer division, Digit reversing, Table generation for n, a n C b , Factorial, sine series, cosine
series, r , Pascal Triangle, Prime number, Factors of a number, Other problems such as Perfect
number, GCD numbers etc (Write algorithms and draw flowchart), Swapping
UNIT-V
Functions Basic types of function, Declaration and definition, Function call, Types of function,
Parameter passing, Call by value, Call by reference, Scope of variable, Storage classes, Recursion.

References

- Computer fundamentals and programming in c, “Reema Thareja”, Oxford University,
Second edition, 2017.

- E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill.
- Brian W. Kernighan and Dennis M. Ritchie, The ‘C’ Programming Language, Prentice

Hall of India.
- elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
- https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more

clarity in understanding the topics and verities of problem solving methods.

c0l[Iltrt
Total Pages

l2lntrodoctlon To C Lcngocae

LcngccAe Fondanentals l2

Operotorr t6

Bollt-ln Operqtol3 ond Fsnrtlon 2Z

Control Strortores 3Z

Introdoctlon to Ploblem Solvlng 20
6.1 lntroduction€'-1
6.2 Problem Solving Techniques6-2
6.3 Stepsrn Problem Solving.........6-s
6.4 Algorithms and F1owchafts.................6-7
6.5 Characteristics of an A\qorithm.................6-9
6.6 Conditionals in Pseudocode6-10
6.7 Loops in Pseudocode6-10
6.8 Time Complexity6-13
6.9 Simple Examples:Algorithms....6-17
Slnple f,rlthnetlc Probleml t6
7.1 Program for Addition of Two lntegers7-l

Principles of Programming &.. .1. @

7.2 Program for Muttiptication of Two lntegers--.....' """"""' 7-2

7.3 Program for Division of Two lntegers........ """"""""""' 7-2

7.4 Program for determining Number is +ve or -ve..". """"' 7-3

7.5 Program for determining Number is Odcl or Even. """"" 7-3

7.6 Program for Finding Maximum of Two Numbers.....-. ""' 7-4

7.7 Program for Finding Maximum of Three Numbers...... """""""""""" 7-5

7.8 Program of Sum of first N Numbers....'. """"""""""""' 7-6

7"g Program for Reversing lnteger Number.-...... """"""""' 7-6

7.10 Program for Table Generation of N Number """"""""" 7-7

7.11 Program for Factorial .. """"'7-8
7.12 Program for Finding Sine of a Number........ """""""""' 7-8

7.1g Program for Finding Cosine of a Number. """""""""""7-9
7.14 Program for Combinations...............'. """' 7-9

7.15 Program for Permutation................... """ 7-'l0

7.16 Program for Pascal Triangle """""""""' 7-1 1

7.17 Program for Finding Prime Number.......'......".'. """""'7-12
7.18 Program to Finti Factors of A Number ""7-12
7.1g Program for Greatesi Common Divisor between Two Nos.........."" """"""""""" 7-13

7.20 Program for Swapping of Twc lntegers"...'.'. """""""" 7-14

F(|nctloni 22

8.1 lntroduction""""""""" 8-1

8.2 What is a Function? .. """""' 8'1

8.g Functions and Structured ProgramminS...'.'..........-. """8-2
8.4 How a function Works?..... """""""""""" 8-2

8.5 Library and lJser defined Functions """"" 8-3

8.6 Function Declaration and Definition """""8-5
8.7 Writing a Function.... """""" 8'6

8.8 Catling a Function
8.g Passing Arguments to a Function """""' 8-10

8.10 Functions with Variabte Arguments"'. """ 8-12

8.11 Command Line Arguments............'.- """8-13
8.12 Recursion..... """"""""""" 8-15

8.13 Function Returning a Pointer....'. """"""8-19
Storqge closses | 2
g.1 Meaning of Terms...... """"" 9-1

g.2 5cope........... '"""""""""""'9-2
g.3 Storage C/asses...".... """""" 9-4

Principles of Programming & Algorithm

INTRODUCTION TO
C LANGUAGE

Introduction to 'C' Language

7.1.7 HlstotY
The development of c language was a result of the evolution of several languages'

which can be called ,the ance"stori of c'. These were Algol 60, cPL, BCPL and B'

In the 1960s many computer languages' each for a.specific purpose' were

developed, e.g coBoi ana iontReN. The need was' felt for a general purpose

language that could suit a variety of applications. An international committee set tor

thispurpose,desrgnedAlgol60,whiclreventuallyledtothedevelopmentofC.

i'Algoi60wasamodularandstructuredlanguagebutitdidnotsucceedbecause
it was found to be too abstract and too general'

ii. The combined programming Language (cPL) developed at cambridge

university and Univeisity of London in 1963 was a successor of Alqol 60.

Howeverrtwashardtolearnanddifficulttoimplement.
iii.TheBasicCombinedProgrammingLanguage(BCPL)wasVeryclosetoCPL

and develop"Jty vurtin i.ichards lt cu*trtioge University in 1967' BCPL was

too less powerful and too specific and hence it failed'

lV.ThefatherofClanguagewastheBlanguagedevelopedbyKenThompsonot
Beli Laboratories in 1970. It was design"d fot an early implementation of

UNIX. However, it was machine deperident and a 'type-less language'' For

this reason, Dennis Ritchie began *ork on a new language as a successor to B'

V.The,C,programminglanguagebyDennisRitchiecameintoexistenceinl9T2
at BelI Laboratories, The early development and use of C was closely linked

withUNIXtbrwhichitwasdeveloped.Formanyyeals,theonlyreference

1>1

available on C was
Ritchie's book.

1 > 2 lntroduction To C

the published informal description in Kernighan ancl

In 1983, the American National Standards Institute (ANSI) established a
committee to provide a formal comprehensive definition of 'C'. This ANSI standard
known as "ANSI C" was completed in 1988.

Development of 'C'
Summary

(By an 1 960)

1.7.2
Computer languages have evolved over the years from the earliest machine

language to the recent natural languages.

Low Level Longooger

These languages were the earliest languages developed. Under this category, we
have Machine and Assembly languages.

Features of Low Level Languages

1'. These languages are greatly hardware dependent i.e. the code had to be
written for specific hardware.

2. Programs written on one machine will not run on another (Non-portable).

3. Programmers are required to have knowledge about the hardware as well.
e Machine Language

Since the computer is made up of electronic circuits, they can only understand
binary logic (0's and 1's). Hence in order to communicate with the computer, the user

f-As"t60 -l
International Committee,

J
f-cPL

_-l

(At Cambridge and London University, 1963)

f-rCFr-l
(Martin Richards at Cambridge University, 1967)

r-+__-t
(Ken Thompson at Bell Laboratories, 1970)

r-j--_-t
(Dennis Ritchie, BellLabs, 1972)

Computer Langucrges

__Zlrlpl"t "f
pr"gr"^,

has to give instructions in term of 0's and 1's. This was callecl machine language andrt was one of the earliest computer languages (1940,s).

Advantage

t. Since the computer circuits can directly interpret 0 and r., execution otprograms is very fast.

Disadvantages

L Writing programs in binary is very difficult.
2. It is very easy to make errors during writing or data entry.
3. Debugging is very difficult.
4. There is no distinction between the instruction and operands or data.
5' It is difficurt to understand the program logic by looking at the program.
o Symbolic / Assembly Language

These were developed in the 1950's to remove the disadvantage of MachineLanguage. In these ranguages, small English like words, calred mnemonics wereused for instructions (For exampre: ADD, SUB, etc) and hexadecrmal codes were useofor data.

Example : 8085, 8086 languages.

Advantages

1, Writing of programs became easier.

2. Errors are minimized

3. Identification of errors is easy.

4. There is a distinction between instructions and data.
5. Programs can be easily understood.
Disadvantages

1. Because a computer does not understand symbolic language, it has to betranslated to machine language.

2' A special software called Assembler is needed to translate assembly cocle tr,rmachine code.

3. Execution becomes slower.

Hlgh Levcl Lcngooges
High-Level languages were developed to

1.. Improveprogrammingefficiency.

2. Shift focus from the computer to problem solving.

Principles of Programming and Algorithm 'l D 4 lntroduction To C Language

3. Develop portable applications.

Features of High-Level languages

7. Use of English-like words for instructions.

2. Support to multiple data-types like characters, integers, real-numbers etc.

3. Hardware independent instruction set. (Portability)

4. Programs have to be converted from high-level languages to machine -
languages.

5. Conversion is done by special Software (Compiler or Interpreter).

Example: Pascal, FORTRAN, COBOL, BASIC, etc.

Compilers qnd Intelpletcls
Programs written in a high level language have to be converted into machine code

in order to be executed. The software which does this translation is called a Compiler
or Interpreter. Some high level languages use a compiler whereas some use an
interpreter.

Difference bctween Compilcr cnd Interplctel
No. Compiler lnterpreter

1.
A compiler takes the entire program and
generates the object code for the program.

An interpreter takes a single instruction
of the program, converts it to object
code and executes it.

2. An intermediate object code file is created No intermediate file is created.

3.
Once the object code is created, the
program need not be compiled everytime
before execution

Every time a program is exe;ut;d,
conversion from high level to machine
code has to be performed.

4. A compiled program executes faster
especially if the program contains loops An interpreter is slower than a compiler.

5.
The compiler is not involved in the execution
of the program.

An interpreter also executes the
instruction.

6,
There is more memory requirement since
object files are created. Memory requirements are less.

7. A list of errors is generated after the entire
program is checked.

Errors are displayed for every
instruction interpreted. .'. Debugging is
easier.

L PASCAL, C use compilers BASIC has an interpreter

1.1.3 Where C stonds
The 'C'programming languages is a very powerful and flexible language.
It provides the programmer a facility to write low-level programs as well as high-

level programs.

Thus, it is designed to have both-good programming efficiency ancl good rnachine
efficiency.

For these reasons, C is called a Middle Level Language. It permits machine
independent programs to be written as well as permits cloie tnteraction with the
hardware.

APPLICATION AREAS
'c' is a general purpose programming language and not designed for specific

application areas like COBOL (business applications) or FORTRAN (scientific ancl
engineering applications).

'C' is well suited for business as n'ell as scientific applications because it has
various features (rich set of operators, control structures, bit manipulation, etc.)
required for these applications.

However it is better suited and widely used for system software like oper.ating
systems, compilers, interpreters, etc.

FEATURES OF 'C'
In the current scenario there are several languages to choose from. Most are well

suited for a variety of tasks. However, there are several reasons why ,c, is a popular
programming language.

1. Flexibility: 'c' is a general-purpose language. It can be used for diverse
applications. The language itself places no constraints on the programmer.

2. Powerful: It provides a variety of data types, control-flow instructions for
structured programs and other built-in features.

3. Small Size: 'C' language provides no inpuVoutput facilities or file access.
These mechanisms are provided by functions. This helps in keeping the
language small. 'C' has only 32 keywords, which can be described in a small
space and learned quickly.

4. Modular Design: The 'c' code has to be written in functions, which can be
linked with or called jn other programs or applications. C also allows user
defined functions to be stored in library files and linked to other programs.

5. Portability: A 'c' -.rrogram written for one computer system can be compiled
and run on another with little or no modification. The use of compiler directives

Principles of Programming and Algorithm 1 Y 6 lntroduction To C Language

to the preprocessor makes it possible to write a single program that cair be lrsecl
on different types of computers.

6. High level structured language features: This allows the programer to
concentrate on the logic flow of the code rather than worry about the hardr,vare
instructions.

7. Low-level features:'C'has a close relationship rvith the assembly lanquagt
making it easier to write assembly language code in a 'C' program.

B. Bit Engineering: 'C' provides bit manipulation operators, which ar(' a gre.rl
advantage over other languages.

9. Use of Pointers: This provides for machiue independent address arithmetic.

10. Eificiency: A progran written in 'C' has development efficiency as well as
machine efficient (i.e. faster to execute).

The'C' language, however, does have its limitations

t. It is not suitable for programming of numerical algorithms since it does not
, provide suitable data structures.

2. 'C' does not perform bound checking on arrays. This results in unpledictable:
errors, which are difficult to locate.

3. The order of evaluation of function arguments is not specified by the languaqi:.

Example: Inthefunctioncall, f (i,++i); it is not defined whether the
evaluation is left to right or right to left.

4. The order in which operators are evaluated is not specified in some cases.

Example In a[i] = b [i + +], the value of i' could be incremented after the
assignment or it could be incremented after b [i] is fetched but beforc
assigntnent. The order of evaluation of operands of an operator is also not
specified. Example: Sum = (++a,- - a). Here it is lcft to the compiler as to
which it evaluates first.

5. 'C' is not a strongly typed language, which rneans that the compiler does nol
strictly check and indicate errors for those statenrents that attempi. a nrisrnatch
of clata types. This can cause unintentional errors, which are difficult to trace.

EM PRoGRAM DEVELoPMENT CYcLE
The program development cycle is completed in four steps.

1. Creating the'C' source code.
'2. Contpiling the source code.

3. Linking the compiled code.

4. Running the executable file.

Principles of Programming and Algoritlm 1 > 7 rntroduction To c Language

file.cfile.c

UNIX

file.obj

file.exe a.oul

file.o

Figure 1.2

Principles of Programming and Algorithm 1 > I lntroduction To C Language

Creoting the soorcc codc

Any editor or word processor can be used to create the source code. The file
containing the source code has to be a 'text' file with an extension .C most compilers

come with a buiit in editor. On UNIX, the editors like vi, emacs, etc. can be used.

Compiling the source codc

The pre-processing is the first step in the compilation. The source code is given to
the pre-processor (Pre-processor is a system program that modifies a C program prior
to its compilation) which checks for special instructions (preprocessor directives) ln
C program {line beginning with # provides an instruction to the preprocessor) and

performs other tasks to give the pre-processed code. The compiler then converts thrs

code to binary code (object code). On UNIX systems, the object code has an extensron

.O and on others it is .obj.

Several compilers have been developed for C. Some of the commonly used ones

are: Microsoft C, Borland C, Turbo C, GNU C. Programs can also be compiled on

UNIX by the CC compiler.

Linking the obiect code to Gleotc qn cxccqtoble codc

The object code of the program has to be linked with the object code of
precompiled routines from libraries. The linker creates a file with .exe extension.

Executing the progrqm

Once the executable file is created, you can run it by typing its name at the DOS

command prompt or through the option provided by the compiler software. If the
desired results are not achieved, changes may have to be made to the source code.

When the source code is changed, it has to be recompiled and linked to create the
correct executable code.

STRUCTURE OF A 'C' PROGRAM

The basic building blocks of every C program are Functions'

A function is nothing but a module or a subprogram, which performs some task. It
may accept some information and may return a single output.

The function main

Every C program censists of one or more functions one of which is the function
called main. Program execution begins from this function and ends when the
instructions in the main function have been executed.

The basic structure of a 'C' program is as shown below:

Executable

UNIX

file.c

file.obj fite.o

file.exe

file.c

Figure 1.2

Type the Program

Principles of Programming and Algorithm 1 D 8 lntroduction To c Language

Creoting the source code

Any editor or word processor can be used to create the source code. The file
containing the source code has to be a 'text' file with an extension .C most courpilers
come with a built in editor. On UNIX, the editors like vi, emacs, etc. can be used.

Compiling the soolcc codQ

The pre-processing is the first step in the compilation. The source code is given to
the pre-processor (Pre-processor is a system program that modifies a C program prior
to its compilation) which checks for special instructions (preprocessor directives) in
C program (line beginning with # provides an instruction to the preprocessor) and

performs other tasks to give the pre-processed code. The compiler then convefis this
code to binary code (object code). On UNIX systems, the object code has an extension
.O and on others it is .obj.

Several compilers have been developed for C. Some of the commonly used ones

are: Microsoft C, Borland C, Turbo C, GNU C. Proqrams can also be compiled on

UNIX by the CC compiler.

Linking the obiect codc to cleotc qn cxccotqble codc

The object code of the program has to be linked with the object code of
precompiled routines from libraries. The linker creates a file with .exe extensi,on.

Executing the progrom

Once the executable file is created, you can run it by typing its name at the DOS

command prompt or through the option provided by the compiler software. If the

desired results are not achieved, changes may have to be made to the source code.

When the source code is changed, it has to be recompiled and linked to create the

correct executable code.

STRUCTURE OF A 'C' PROGRAM

The basic building blocks of every C program are Functions.

A function is nothing but a module or a subprogram, which
may accept some information and may return a single output.

The function main

Every C program consists of one or more functions one of
called main. Program execution begins from this function
instructions in the main function have been executed'

The basic structure of a 'C' program is as shown below:

performs some task. It

which is the function
and ends when the

Documentation Section
Link Section

Definition Section
Global Declaration Section

Function Section
maino

{
Declaration Part
Executable Part

Subprogram Section

Function 1

Function 2

Function n

user
defined
functions

The documentation section consists of comment lines (enclosed in /. and ./), which
are used to convey program information and other details.

Note: Comments can be put anywhere within the program.

The link section gives instructions to the compiler to link library files a1d other.
user files.

The definition section defines all symbolic constants.

Some variable need to be used in all functions. Such variables are declared in the
global declaration section.

Every C program must have one main() function, It consists of local declaration
(information used only within main) and "C" statements. All statements end with a
semicolon.

The sub-program section contains all userdefined functions that are called in the
main function. The subprogram section may also appear before main() although it
rs normally placed immediately after main().

Principles of prooramming and Atgorithm 1 > lO lntroduction To C Lanquaoe

1.5.1 Sample 'C' program
To dlsploy thc toilowrng messoge G on thc streen

Hello!

Welcome to C
l--il
It_.Jl

1.
2.
?

A

5.
6.
1.

Program
/* My First C program */
#incl-ude<stdio. h>
main ()

{

printf (.,He1lo ! \nWelcome to C',) ;

Ilello I

WeLcome to C

Explanation

1' Line 1 is a 'C' contment' A comment is used to give aclditional informatj'n
."*'ti:

program' It has to be enclosed in /' and 'l-co-,r,"rrts are ignored by

Comments can_be written anywhere in the program and are used fordocumentation. Trrey cannot be written inside o,r" urro"th", (nesting).
Example: /. First comment/, Second Comment ./ ,/ isinvalid.

'2' Line 3 is the link section and it tells the compiler to inclnde information aboutthe specified file, i'e' Standard Input - outpuifunctions. The #include directivergives the program access to a library. A libiary is a collectron of usefurl functionsand symbols that may be accessed by u progrum. The ANSI (American Nationarstandards Institute) standard for c requires that certain standard libraries beprovided for every ANSI c implementation. A c system may expand thenumber of operations available by supplying additionaiiu.uri"r; an indivicrualprogrammer can also create libraries of funitions. Each library has a standardheader file whose name ends with the symbols.

The #include directive causes the preprocessor to inserl definitions fror' astandard header file into a program before compilation.

The directive #include <stdio.h> /- printf, scanf definitions ,/ notifies thepreprocesor that some names used in th" progrurn t*.n u, prinft scanf) arefound in the standard header file <stdio.h>.

Output

Principles of

3. Line 4 is
the most

Introduction To C

the beginning of the mai'() function. It is the onry compulsory and
important function of any C program.

6.

Line 5 and 7 are the opening artd cLosing braces of rnain. These braces contain
the instructions to be executed (statentents) .

Line 6 is the only statement in the function. It rs a call to anoilrer functron
called printf, which is an output lr.ruction. Its job is to display the pr<.rvidecl
information on the screen. The definrtion of this function i. rn the standard
tnput output library stdio.h. Hence we have incluclecl that fiie in the prograrn.

The sequence of characters enclosed in ,, ', is called a string which is displayed
on the screell as it is.

\n is a special character (although it is composed of two characters) called the
newline ch(r r.icter. This character advances the output to the next line.

printf does not supply a new line automaticaliy. Hence nrurtipre printr ()statements are used. So, the following printf statements

printf ("Welcome,') ;

printf (.'to"; t

pri-nt.f ("C',) ;

Will give the following output
Welcome to
C
We can iutroduce the new-line character

The printf statenents will now look like.

pr:-ntf (" Welcome to \n C,');
This is analogous to writing

prrntf ("Welcome to \n,,) ;
printf ("C',) ;

in 1he strinE at the appropriate position

Princioles of Proqramminq and Atgorithm 1 > 12 lntroduction To C Language

F,.x.s.t.s,,i.$,e.

1.

z,

J.

A

Holv can a comment be written in a 'C' progrant.i

Can the user defined functions be written above main()?

What is the purpose of the link section?

What will be printed by the following segments of 'C' code?

i. printf (" Hello \n\n\n everYone");

ii. printf ("\n");

'C' is middle level language. Comment.

What are the advantages of 'C'?

5.

6.

LANGUAGE
FUNDAMENTALS

.C' CHARACTER SET
The C character set consists of upper and lowercase

characters and white spaces. fne alpnaUets and digits
alphanumeric characters.

1. Alphabets

ABC ..,,..,..2
a b c,...2

2. Digits

0123456789
3. Special characters

,;:#'..!i
4. White space characters

blank space, new-line (\n), carriage return (\r), form
vertical tab (V)

C TOKENS
:.^

The smallest individual units in a C program are called

alphabets, digits, special
are together called the

7o &n i:+[]/\

feed (\f), horizontal tab (\r),

tokens as shown below.

We shall be studying each of these in the sectrons to come.

2 >1

Principles of Programming and Algorithm 2 b 2 Language Fundamentals

pf,t IDENTIFIERS AND KEYWORDS

Every C word is classified either as an identifier or a keyarord.

ldcnt if ler

An identifier is a user-defined name given to a program element-variable,
function, and symbolic constants.

There are certain rules, which should be followed while nqming an identifier. 'l'hey

Qre:

i. Identifier names rnust be a sequence of alphabets and digits and must begin
with an alphabet or an underscore (_)

ii. No special symbols, except an underscore(_) are allowed. An underscore is
treated as a letter.

iii. Reserved words (keywords) should not be used as an ideutifier.
iv. C is case sensitive i.e C treats uppercase and lowercase letters diffelently. It is

a general practice to use lower (or mixed) case for ','ariables and functron
nanes and uppercase for symbolic constants.

v. For any internal identifier name (an rdentifier deciared in the same fiie) at least
the first 31 characters are significant in any ANSI C compiler.

Exomples of valid identifiers
Rate _of_ interest add _ matnx Sum PI
Month _of _Year a1,23

Keywords

Keyrords are reserved words and are predefined by the language. They cannot be
used by the programmer in any way other than that specified by the syntax. ANSI C
language has only 32 keywords. They are

ANSI C Standard Keywords

aulo double lnt struct

break else Long switch

case enum register typedel

char extern retu rn unton

const float Shorl unsigned

continue for signed void

defaull goro sizeof volatile

do it static while

I
I'rtrn:i1ilt,s ul Progro^rirg urd Algorith* 2 > g L"rguug" Furd"^"nt"t,
'I lrL' lollowirrcl arc cjddjlional keywords it-t Turbo C.

asm Far near

L5 SS Huge pascal

uo cdecl interrupl

gA coNsrANrs
(lonstants r-efer to fixed values that do not change during program executron. They

can be classified as:

i. Integer constants

ii. Floating Point Constants
iii. Charactersconstants
iv. String literals
v. Enumeration constants.

2.4.1 Integer Constants
An integer constant refers to whole numbers. It can be specified in three ways:

a. Ordinary Decimal nurnber (base 10)
b. Octal numbers (base 8)
c. Hexadecimal numbers (base 16)

An tnteger constant hos fo follow the Iollowing rules.
i. Il contains a sequence of digits from 0 to 9. (Octal contains digits from 0 to 7;

Hexadecimal constant contains digrts from 0 to 9 ancl letters A-F)
ii. An octal constant is preceded with '0' and irexadecimal constant with 0X or 0x.
iii. No commas, spaces or other symbols are allowed in between.
iv. The integer can be either positive or negative. It may or may not be prefixed by

a - srgn.

v A size or sign qualifier can be appended at the end of the constant.
U or u for unsigned.

S or s for short

L or I for long.
Exan'Lples:

123 567BgU (unsigned integer)

-3 1000 7689909L (Iong integer)

01.70 OX34ADL (long hexadecimal)

g:1
100 s

6578890994UL (unsigned long integer)

12OUS (unsigned short)

Principtes of Programming and Algorithm 2 > 4 Language Fundamentals

Nole: The ANSI C standard supports a * sign before the positive integer
corresponding to the - for a negative integer although it is rarely used.

2.4.2 Floating Point Constants
These are real numbers having a decimal point or an exponential or both. The

rules governing the floating point representatlon are :

r. They have a decimal point and digits from 0 to 9.

ii. No embedded spaces, commas and other symbols are allowed'.

iii. They may or may not be prefixed by a * sign.

iv. It is possible to omit digits before or atter the decimal point'

Exantples: 0.246 975.64 -.54 +5.

Exponentiql notqtion

This is used to represent real numbers whose magnitude is very large or very

small.

The format is:

mantissa e exponent
Or

mantissa E

i. The mantissa can be a floating point number or an integer'

ii. It can be positive or negative.

iii. The exponent has to be an integer with optional plus or minus sign.

Example: The number 231,.78 can be written as 0.23178e3 representing
0.23778 x 10 3.

75000000000 can be written as 75e9 or 0.75e11, 0.0000045 can be written as

0.45e - 5.

2.4.3 Character Constqnt
A character constant is any single character from the C character set enclosed

within single quotes. Exrtmple: '#' '2'
The value of the character constant is the numeric value of the character.
Example: the character constant '0' has ASCII value 48, which is unrelated to

numeric dtgit 0.
Escopc Sequcnces

C supports some special character constants used in output functions. They are

also called backslash character constants because they contain a backslash and a

character.
Although they look like two characters, they represent only one.

Complete set of escaPe sequence ls:

Principles of Programming and Algorithm 2 Y 5 Language Fundamentals

Character Meaning
alert (bell)

\b backspace
\f form feed

\n newline

\r carriage return

\t horizontal tab

vertical tab
\0 null character

backslash
question mark

single quote

double quote

\0 octal number

\XN hexadecimal constant (where N is hexadecimal constant)
\N octal constant (where N is an octal constant)

2.4.4 String Literals
A string constant or string literal is a sequence of zero or more characters enclosed

in double quotes.
Example: "Welcome to C"

"First Line \n Second Line"
The double quotes are not a part of the string but only act as delimiters. If the

backslash or double quote is required to be a part of the string, they must be preceded
by a backslash (\).

Example:
printf ("He sai-d \"Hello \" "); will display
He said "Hello"
printf ("\\ rs a backslash") ; displays, ,

\ is a backslash
Technically, the internal representation of a string has a nuII character ('\0') at the

end. Therefore the physical storage required is one more than the number of
characters in the string.
Dif f erence bctwcen 'q' qnd "q".

'a' is a character constant and stored as the numeric value of a. "a" is a strinq
literal and consists of the characters, a and ' \0'.

'a'

T_F-l

t hrrlo

1

n
rr t hrrlo

I
e

Principles of Programming and Algorithm 2 > 6 Language Fundamentals

2.4.5 Enumeration Constant
An enurneration is a list of constant v.ltues-- each can be represented by an intecJer.

It is a user defined data type with values ranging over a finite set of identifiers
called enumeration constants.

Example: enunl color {red, blue, green};

Red, blue and green are constants, which represent the integer \raltres of 0,1 and
2 respec'trvely.

\ralues can be explicitly specified for the identifiers.

t'rruni color {red = 10, blue, green : 30 };.

Here, blue is assigned number 11. If no value is specified for greerr itwill assun're
the valur, 12.

Enunrerations provide a convenient way to associate constant values r,t'ith narnes.
It also makes the prograrn easy to read and understancl.

ffi VARIABLES

A variable name is an identifier or symbolic narne assigned to the memory
Iocation where cl.rta is stored, In other words, it is the data name that refers to the
stored value. A variable can have only one value assigned to it at any given trme
during proctram execution. Its value may change during the execution of the
progranr. RuIt's rec1arding naming variables:

i. Srrrce f tre variarble name is an identifier, the sarle rules apply.

ii. Meanrngful n.rmes should be given so as to rellect value it is representing.

student name rank 1

basic sal amount
roll_num No. of._,years

2.5.1 Data types in C
Programs work by processing data. A programnting language must give you a way

of storing the clata. Associated rvith the data is its type.
When a variable is used, you have to specify what type of data it can contain.

The C prograrnming language supports the following data types:
inL float double char void

lhc1,al" calk:d basic or fnndarnentals clata types. In addition, C also supporls lbe
enunrer.lted data type specified by the kc'lurord enum.

Prindfles of Programming and Algorithm 2 > 7 Language Fundamentals

Fundamental data types

Data types Description Size (in bytes) Range

char A single character 1 -128 lo 127
lnt an integer number z -32768 lo 32767

floal
A single precision floating point number
(6 precision digits)

4 3.4 e-38 to 3.4 e +38

double
A double precision floating point number

(10 precision digits)
8

1.7e-308 to 1.7e
+308

void empty data type 0 valueless

The size allocated for an inteqer depends upon the compiler. The size of a data-
type can be obtained by using the sizeof() operator which rlrves the size of the
specified data tlpe in bytes.

Usage:

sizeof (daca_cype)

Example:

printf ("%d" ,:izeof (char));
Qool if iers

Aqualifier, when applied to a data type alters its size ul sigr.r.

The size qualifiers are

r short
. long
'I'he sign qualifiers are
. signed
o unsigned

\krrtttally, sholt and lonq cannot be applied to chcrr arrcl float ancl signed and
unsigned cannot be applied to float, double and lonq cloublr..

ANSI C has the follorving rules:

short int < : int < = Iong int
float < : double < = lo1lg double
The data t)rpes, sizes ancl their ranges are as shown in the followrug table.

All possible Data types in C (Basic and Qualified)

Type Size (in bytes) Range
cfrar I -128 Io 127

unsigned char 0 to 255

signed char 1 -128to 127

unsiqned int z 0 lo 65535

siqned int z -32768 lo +32767
short int a 0 to 65535

Principles ol Programming and Algorithm 2 >8 Language Fundamentals

short siqned inl 2 *32768 to 32767

lonq int A - -21 47 483648 to 21 47 483647

lonq unslqned int A Q to 4294967295

long signed int Aa -21 47 483647 ro 21 47 483648

float A 3.4e-38 to 3.4 e+ 38

double 8 1.7e - 308 to 1.7 e+ 308

lono double 10 -1 .7e49321o +1 .7e4932

Note.' The exact size allocated and the ranges for these data types can be obtained
from constants defined in header files <limits.h>. <float.h> and <values.h>.

Enomeroted Doto type
A user defined data type along with its set of identifiers can be created by the

Example:

enum daysofweek { Sun, Mon, Tue, Wed, Thu, Fri, SaL};
void dctq tyDc

void ls an empty data type defined by the keyvrord void. It is used with functrons.

When used as a functron return type, it means that the function does not return
anylhinq.

Example: void calculate_and_display (int a) .

When used in place of the pararneter list, it indicates that the function does not
accept any information.

Example: int random_number (void).

We shall be dealing more with void data type in the book.

Creoting new dotc-types nomcs

C provides a facility called typedei for creating new data type names.

The syntax of typedef is

I r ',^^^-F ^:- = *.r-o ..r.^-.^ iI LVUgUg! UALd LVJs 5Vr-vIIVILL I

For example, the statement,

cypedeL unsigned long ulong;
declares ulong as a new data type equivalent to unsigned long. It can be used in

exactly the same way as the type unsigned long can be.

Example

typedef int. length;
makes the name 'length' a synonym for rnt.

c It is important to understand that a typedef statement does not create a new type
in any sense; it merely adds a new name for some existing type.

. Use of typedef enhances program readability.

lollowi nq decla ralion.

Principles of Programming and Algorithm 2 > 9 Language Fundamentals

DATA DECLARATIONS AND
DEFINITIONS

Programs operate on data. The data items, which a proglam manipulates, can b€-

divided into two classes:

1. Constants

2. Variables

While variables take different values at different polnts in time as the progranr
executes, constants have fixed values. These must be declared before they are used.

l. Declcring vqlioblcs
All variables used in the program must be declared at the beginning.

A variable can be used to store data of any data type irrespective of what the
variable name is. A variable is declared by the following syntax.

ql. Ar^-a c l :q< f)^l-
^-f

\/hd rrrr'1

var2,........,varn
where varl to varn are variable names separated by commas. We shall study
about storage classes in later.
Example
i nF markq i-a'.4Yv,

float amount;
Declaration does two things:
i. It informs the compiler the name of the variable.
ii. It specifies what type of data the variable will hold.
T'here are three basic places where variables will be declared
i. Inside functions - local variables
ii. In the definition of function parameters - formal pararneters.
iii. Outside all functions - global variables.
Iocal variables: These variables are also called automatic variables (keyword
'auto' may be used to declare them). They can be used only within the blor:k
where they are declared. A local variable is created upon entry into the biock
and destroyed upon exit.
Example: Consider two functions as shown
funcl ()

{ int x;
x = 20;

)
func2 ()

{ int x;
x = 100;

]

Here, x has been declared twice but the variable x in ftrnc1() is not reiated to
the variable x in func2(). Both are independent and exist only within their
respective functions.

Principles of Progemming and Algorithm 2 > 10 Language Fundamentals

Formal parameters
I

If a fuuction is to accept data, it must use arguments and declare them to
accept values. They behave like any other local variable inside the function.

Example
sum(ant a, inc b)
{

:l:: j function body
l

Here, sum is a function which accepts two integer values in variables a and b.
It could also be written as follows:
sum(a,b)
1nt a;
inL b;
{

funct.ion bodv
i
We shall be studying formal parameters in detail in the Chapter 'Functions'.
GIobaI Variables
Unlike local variables, global variables exist and can be used anywhere in a

program. They may be accessed by any expression regardless of what
function the explession is in.
They ale created by declaring them outside any function.
Example
int counL; / * count is globa1 */
main ()

{ count = 200;
funcl () ;

I

funcl ()

{ count = i00 ;

)

In i ti aI i zi n g Vari a bl es

Assigning values to variables cluring declaration is called initialization.

Example

InLa=):
This statement not only declares the variable r but also assign the value 5 to
this variable.
Multiple variables can also be initialized.
Exomple
intsum=0,i=10;

Z. Def ining Constonts

A constant cun be declared in C by two methods

" [JsiLiq const qualifier

Principles of Programming and Algorithm 2 Y 11 Language Fundamentals

. Using the #define preprocessor directive.

const is a qualifier that can be applied to a data item of any data type. The
contents of this data item cannot be changed during program execution- oniy
assigned at the time of declaration (initialized).

Synlox

I cons data-type consLant name = valuei
I

Example

const float pi = 3.142 ;
const char quit = 'e';
Another method of defining constants is by using a pre-processor directive *
#define.

(Pre-Processor directives are covered later in this book)

The #define directive works as follows

I #def ine CONSTNAI'IE titeral I

This creates a constant narned CONSTNAME, which represents the constant
value of the literal. By convention, the constant name is written in uppercase.

Example

#detrne PI 3. I42
+oerane 'l'RU.t1 r
Any occurrcnce of PI in the program is replaced by the literal 3.1,42.

*E.x.s.t.s..i.s.s.
A. Programming exercises

1. Which of the following are invalid identifier names? Why z

rate of_interest Basic salary
"name"

2 nd _ month Float
Compound_interest Address_of,employee

124.56 x + y

2. Which of the following are invalid constants of the specified category ? Why?

a) Integer

25,000 40565 OxAB
-75.0 ',123', -327000

b) Character

"a" '25' 'x' \b'
'1' abcd '#a' \\'

PI

Principles of Programming and Algorithm 2 > 12 Language Fundamentals

.l qtrinn litor,1l5L,

"He said, "He1lo" "
"abc+ $-**--\n"
" r23.25',
" ((1ef t corner \ r Back t.o the lef t \n\n"

d) float

16.3 e -18 -17 .e.3 914.533

2.5 x 16.6 +1 .7e-3 25.4e+4

3. Write equivalent C expressions for the following equations.

a*b a-b I S*ty x I
.+d -.- d L ".t

- (x+y) (l''y) I
1 .. 9cS : ut+;at'. , f =1-l'32ZJ

B. Review Questions

1. Explain the four basic data types in C.

2. Explain the types of constants in C.

3. What are variables? State the rules for namino a variable.

4. What is an escape sequence?

5. What are the two methods for declannu constants?

1r**ruM

ffiM-effi
;ffiffi|
@Kffiffr

OPERATORS

OPERATORS AND EXPRESSIONS

An operator is a symbol that represents an operation. It instructs the compiler to
perform some action on one or more operands.

Example
The Symbol + represents addition.
An expression is a combination of variables, constants and operators written

according to the syntax of the language. In C, every expression evaluates to a valuc
i.e. , every expression results in some value of a certain type that can be then
assrgned.

Exomples of expressions
a*b

PI*rxr
(x + yl - z.

An operator can be unary, binary or ternary depending on whether it operates on
one, tr,vo, or three operands respectively.

Operators can be classified according to the nature of operation they perform. The
different categories are :

r Arithmetic operators

r Relational operators

o Logical operators

. Assignment operator
o Increment and Decrement operators

r Conditional Operator
. Bitwise operators

. Other operators,

3 >1

Principles of Programming and Algorithm 3 > 2 Operators

Operotor Prcccdence !licrorchy cnd Fsrociotivity
If an expression contains more than one operator, the impor-tant question is lthat

is the order of evaluation? Some rr.rles are needed to specify the order in which
opcrations are performed. These rules are called Operator Precedence or Hierarchy
rules.

Precedence states the relative importance or priolrty of operators r,tritir lespect to
other operators.

Another possibility is that an expression may contain more than one operator
havrng the same prlolrty. Here, the associativity specifies the order of evaluation ol
operators having the samc precedence or at the same hierarchy level.

3.7 .1 Arithmetic Operstors
These perform arithmetic operations. C provides five arithmetic operators.

Operator Meaninq Remark
+ Addition Can also be used as unary plus.

Subtraction Also used as unarv rninus

Multiplication

Division
o//o Modulo Division Can be used onlv on inteqer data tvpe

Nole: C has no operator for exponentiation. (The function pow(x,y) in math.h r';rn
be usecl to calculate x').

. The unary minus operator has the effect of nultiplying the operand by -1.

o The unary plus, which was added later, qives the value of the operand.

o Arithmetic operations performed on integers (integer arithrnetic) yields an integer
values.

Example 16+5 :2L
16*5 = 11.

16"5 = ll0

1615 - 3

5/2 :2
. 16'7;5 :1

-16 ur'o 5 : -1 (retnainder after division and the sign is of the first
operand)

Principles of

r Arithmetic operations performed on float operands (float arithmetic) yield a float
r-esult, which is rounded off to the number of significant digrts permrssibre.

Example 5.0 + 2.0 = 7.0

s.0 /2.0 - oa

*2.013.O = -0.666667

' when the operands are of different data types (mixed mode arrthmetic), the resultis promoted to the 'higher' data type. (chii < int < float). Thus if one operand isan integer and the other float the result will be of float type.Exantple 5.012 :2.5

llierorchy of 6rithmetic Opcrotors

Operators Associativitv
t/o L-+R
+- L-+R

Example

Consider the integer expression

512+4-6*2+25t5-3/4
The order of evaluation is as shown:

5/2+4-6'2+2515_3/4
2+4-6'2+2515_314
2+4-12+25/5_314
2+4-t2+5_3/4
2+4-12+5*0
6-12 + 5 -0
- Q-r5- c

- I -U

-t

Nofe^ In crider to ovr': i j:.i"' tlre operator precedence rules, parentheses can be used
since ptrrent'ilcses ha.;e highpr nrionty over operators.

.&'xanlpJe: In ti'rc i:xpression (4+5) . 6,

l'hu adcrrticn wiii btr done first even though t has higher precedence since theaiirlitrcli o lreration is parenthesized.

Principtes of Programming and Algorithm 3 Y 4 Operators

3.7.2 Relational Operators
Relational operators are used to compare expressions. An expresslon contalnrng a

relational operator evaluates to either True (1) or False (0)

Any non-zero rralue is considered 'True' in C and 0 is false. Thus, even negatrve

valnes are Truel

The srx relational oPerators are

Operator Meaning

Less than

<= Less than or equal to

Greater than

>= Greater than or equal to

Equal to (equality)

Not equal to (inequality)

These operators are mainly used in decision-making statenents to decide thc:

course of action in a program. These operators are lower in precedence than
arithmetrc operators. Among themselves, the precedence is

Operators Associativity

< <= >>= L-+R
l= L-+R

Examples

25<30 True

2.5<= 2.5 True

'a'== 97 True

'b'<'a' False

(a+b)!= (x+y) True if the sum of values of a and b is not equal to the sum of values of x and y

3.7 .3 Logical Operators
Sometimes, we need to test more than one condition at a time and make a decision

depending upon the result.

The logical operators are used to combine two or more expressions (usually
relationai) . The entire expression is called logical expression which evaluates to
True(1) or False (0). The three logical operators in C are:

Operator Meaning Remarks

&& LogicalAND \
Logical OR I

Binary operators

Logical NOT Unary operators

Evaluation of a logical expression stops as soon as a true or false result is known.
The results of logical AND (&&) and OR (l l) operators for cilfferent combinations

of the two operands is given in the followrng truth table.

op1 op2 Op1 && Op2 op1 llop2
False False 0 0
False True 1

True False 0 1

True True 1

Lxomples

(marks > : 60) && (marks < 70)
age>60llsatary>10000
The logical NOT (!) operator takes a single expression and reverses the value ol

the expression i'e. if the expression is True, the ! operator evaluates to talse and vice*
versa.

Example

!(5 < 10) evaluate to 0 since 5 < 10 is True.

Precedence and Associtivity of logicai operators.

Operators Associativity
I R+L

&& L-+R
tl L+R

Note: I has higher priority than arithmetic and relational operators, but && and
| | have lower priority than both.

3.1 .4 Increment and Decrement operators
C provides two useful unary operators not generally found in other languages;

They aie,
+ + Increment

Decrement
++ increments the value of the operand by 1 and *- decrements the value of t5e

operand by 1. Both these operators can be used in the prefix form (i.e. before tire
operand) or the postiix lomr (after the operand). The operand can only be a single
variable.

\r'Ihen used rn the pretix fonn, the increment or decrement is done before the value
.-rf the !r].;erdnd is used. If used in the postfix form, the operand increments or
('i(icrcme :rts after its value have becn used.

Principles of Programming and Atgorithm 3 Y 6 Operators

Note: When used independently, the prefix and postfix forms make no difference

but they behave differently when used in expressions on the right hand of an

assrgnment statements.

Example
If n is 5, then the statements * *n; and n* * ; both increment the values of n by 1

and are equivalent to n= n*1 ;

However, in the statement,
y = n+* ; n increments after its value has been assigned to y i.e y is given the

value 5 and then n becomes 6. Whereas y = +* n first increments n to 6 and 6 is then

assigned to y.
The same logic applies to the decrement operator'

Example
Consider the expression x*+ &&++y I lz++ '

Ifvalues ofx, y and z are 0,1 and 0 respectively, the expression evaluates to 0 and

values of x,y and z becomes 1,1 and t respectively'

The && operation is performed before I I. For the && the initial value of x i.e. 0 is

used. + +y will not be evaluated since the result of the && operation rs known to be 0.

For the | | operation, one operand is 0 and so the other <lperand is evaluated. The old

value of z (i.e 0) is used since it is post- increment. .'. 0l l0 yields 0 and then z

increments to 1.

The increment and decrement operators are along with the logical NOT tn
precedence, i.e the highest level we have seen so far. They have a R -+ L

associativity.

3.7.5 Bitwise Operators
C has a distinction of providing six operators for manipulation of data at bit level.

They are applied only to integral operands i.e. char, short int and long whether
signed or unsigned.

Operator Operation

& Bitwise AND

Bitwise OR

Bitwise XOR

Left shift

Right shift

One's complement (Unary)

Except for - the others are binary operators and operate on corresponding bits of

the two operands.

Principles of Prograryrying and Algorithm 3 > 7 Operators

The bitwise XOR (exclusive OR) operator sets a one in each bit position where its
operands have different bits and zero where they are the same.

Example

Assume that a and b are integers with values 13 and 7 respectively. Assuming that
an rnteger occupies 2 bytes,

a in binary : 0000 0000 0000 1101
b in binary : 0000 0000 0000 0111

a & b : 0000 0000 0000 0101
a I b = 0000 0000 0000 1111
a ^ b = 0000 0000 0000 1010

Shift opcrqtors

The bit pattem of the data can be shifted by a specified number of positions to the
left orright using the left shift (<<) and right shift (>>) operators respectively. The
shift operators perform shift of their left operand.

When the data is shifted left, the trailing empty spaces are filled with zeros.

Similarly, the leading empty spaces are zero filled when data bits are shifted riqht.
Example:

a= 0000 0000 0000 1 101
€l<<3 = 0000 0000 0000 1000

zero filled spaces
B>>3= 0000 0000 0000 0001

(The rightmost three bits drop off)

The general syntax rs:

onerand'1 shift nperatorvrr+ I u_vt

rand2

Nole: Shifting by one position to left is effectively multiplying the operand by two.

Shifting right by one position divides the operand by two.

Onc's complcmcnt opclotol
The - operator yields the one's complement of an integer, that is, it inverts each

bit of the operand (1 to 0 and vice versa)

Example
If a = 0000 0000 0000 1101

- a : 711.1 1777 lLlT 0010

Precedence

- is along with other unary operators like ++, -- and ! in hierarchy with R -+ L
associtivity. The shift operators have higher precedence as compared to Bitwise AND,
OR and XOR.

Principles of Programming and Algorithm 3 > I Operators

3.1 .6 Assignm ent operator
The assiqnment operator = is used to assign the value of an expression to a

variable. The synlax is

@
An assignment expression followed by a ; becomes an assignment statement.

Example

sum: a * t0;

The expression a * 10 is evaluated and its value is assigned to variable sum.

c - a << 3;
x=a'3+b/5;

Shorthqnd qssignmcnt operotors

Ttrese are obtained by combining certain operators with the = operator. They have
the format

C supports the following shorlhand assignment olierators
+: -= l: %-

Examples: x*:y;implies x =x+Y;
m/=3;implies m=m/3;
a *= b *t; impliesa= a + (b +1)

Prcccdc n cc

Assignment operators have the lowest priority so far with associativity R -+ L.

Exantple: Consider the statement

a:b=c;
Here, the value of c is assigned first to b which is then assigned to a,

i = j +: k ; is also a vaiid assignment statement which is the same as

i=j=j+k.;
3.7 .7 Conditiond, operators

This is the only ternary operator in C. The operator pair ?: is used to construct
conditional expression of the form.

ex n1? exnression2 : expression 3
(- Conditional expression ---->

Principles of Programming and Algorithm 3D g Operators ., ..

expression 1 is evaluated first. If it is True (nonzero), then expre'Ssion2 rs
evaluated and becomes the resulting value of the conditional expression.

If expression is 0 (False), the value of the entire expression.is that of expression3.

Example: Let a : L0and b = 15,
larger - (a>b) ?a:b;

Here larger will be assigned 15 1.e. the value of b.
This is the same as

if (a > b)
larger = d i

else
l:rnar - h

3.I.8 Other operstors
Commo Operotor

The comma','operator is used to separate a set of expressions. A pair of
expressions separated by a comma is evaluated left to right and the type and value ot
the result are the type and value of the right operand.

Example: Consider i = (j=3, j+2\;
Here, the right hand side contains two exprelrsions j = 3 and j * 2 which are

evaiuated L --lR. Thus 3 is first assigned to j and the value 3 + 2 is assigned to i.

It could also be used to interchange the values of two variables in a single
statement as shown.

l-emp=a,a=b.b=temp;
The comma operator has the lowest precedence and associates from L -+ R.

sizc of Operotor
This unary operator gives the srze (in bytes) of the data-typc t-rr variable. The

usage is
@

OR

@
Example: sizeof(char) gives the result as 1.

Example:
print f ("%d %d" , sizeof (int.) , sizeof (float) ;

typccost opctotol
C provides a unary operator for explicit type conversion called cast operator. Its

usage is
I t t vp e-nEmelexp rre-- i on I

The expression is converted to the specified data type locally only for the purpose
of evaluation of the expression.

Principles of Programming and Algorithm 3 Y 1O Operators _
Example: The ratio of number of males to the number of femaies in a tor,r'n can bct

calculated as :

ratio = no_of_males / no_of_females ;

Since no_of_males and no_of_females will be declared integers, the division of the
two yields an integer. So even if ratio is declared as a float, the fractional parl is
truncated due to integer arithmetic on the right. This can be solved by locally
converting one of the operands to a float so that the result of division is a
float ratio : (float)no*of_males / no_of_females;

fiddress (El qnd Indirection (.1 operotols
C provides two unary operators for manipulating data using pornters.
The & operator when used with a variable yields its address.
The operator denotes indirection and returns the value of the object located at the

address that follow it.
We shall study more about these in later chapters.
Both these operators have a high precedence along with other unary operators.

Thc. ond -> opclqtol3
The . (dot) and -> (arrow) operators are used to refer to individual elements of

structures and unions (covered in later chapters). Structures and unions are
compound data types that can be referenced under a single name.
lloncll

Parentheses () are used to increase the precedence of operators inside them.
Square brackets perform array indexing i.e. given an array, the expression within []
provides an index or subscript to the array.

3.1 .9 Precedence snd Associa tiuitg of operators
The operators are listed in order of decreasing precedence. The Operators grouped

together in one level have the same precedence.

Level Operator Description ASsociativity
1 o Function call L-+R

t1 Array element reference L-+R
Pointer to structure member reference L-+R

o Structure member reference L-+R
z Unary Minus R-+L

T Unary plus R-+L
++ lncrement R-+L

Decremenl R-+L
I Logical negation R-+L

One's comolement R-+L
Pointer reference (indirection) R--+L

& Address R-;L
sizeof Size of an object R-+L
(type) Type casl R--rL

Principles of Programming and Algorithm 3 > 11 Operators

e Multiplication L-+R
Division L--+B

o//o Modulo division L-+R
4 + Addition L-+R

Subtraction L+R
5 Left shift L+R

Right shift L-+R
6 Less than L-+R

<= Less than or equal to L-+R
Greater than L-+R

>= Greater than or equal to L-+R
a Equality L-+R

t- Inequality L-+R
I & Bitwise AND L+R
v Bitwise XOR L-+R
10 Bitwise OR L-+R
11 && LogicalAND L-+R
12 tl LogicalOR L-+R
13 2. Conditional L-+R

14
o/^- t- --
&= A= l=
--l

<< = >>=

Assignment R+L

1tr Comma L-+R

$p STATEMENTS

A C program consists of statements. A statement is composed of expressions and
operators and it is a complete instruction instructing the compiler to carry out some
task.

Like mentioned earlier C statements must always end with a semicolon
(except for preprocessor directives'which are discussed later).

Example: x:a*b;
y:(i+3) .0_5);

These are examples of assignment statements.

Principles ol Programming and Algorithm 3 > 12 Operators

Types of Statements
C statements can belong to one of the following categories:

1. Null statement

A semicolon on a line is a null statenent. It does not perforrn any action.
2. Expression statement

Most expression statements are assignments or function calls.

3. Compound statement

Several statements grouped together in { } forms a compound staternent or a
block. The body of a function is also a compound statement. There can be
statements of other types within the braces.

4. Selection statement

These statements involve condition checking and choose one of several flows of
control. Statements of this type are if statement, if else and switch statement
which will be discussed in later chapters.

5. lteration statement

These statements specify looping, where a statement or a block has to bc
repeatedly executed a specific number of times or as long as the test expression
is satisfied.
The while, do - while and for statements belong to this caregory.

6. Jump statement

Jump statements transfer control unconditionally. These are goto, continue,
break and return statements.

7. Labeled statements

Some statements may carry label prefixes. The label identifier does not need to
be declared and can only be used with the goto statement. Other forms of the
Iabeled statelnents are within the switch statement (case and default).

l.

tlti

-- /'Find simple interest'/

#include<stdio. h>
main ()

{
f l-oac principal , rate, time, int.erest;
cfrscr () ;
nri nt F l "trnf or rho nri nci nrl . ,. \trre1yqr. /,

scanf ("%f", &principal) ;

Principles of Programming and Algorithm 3 > 13 Operators

printf (" \nEnter the rate of interest: ") ;

scanf ("%f", &rate) ;
nrinrf l"\nEnteT Fl.ra r.ima in rroarg.,,),.
v! rrau! \ \rruriuv!

scanf ("%f", &time) ;

/-* echo the dat.a * /
printf (\nPrincipal = %2f\n", principal) ;

printf ("\nRate = ?2f\n", rate)
pr-Lntf ("\nTime = eo2f \n", time) ;

i-rFresf = n-incinal * rafe * time/100.0;
--i-rr/\\\n\ncimnlg interest. is : %2f\n,,, interest);Pr rrlr! \ \rr \rr!rrrry

getcn(); /" freeze the monitor*/

Output

Enter the principal : 1000
Enter Lhe raLe of interest : 5

EnLer the time in years : 4

Principal = 1000.00
Rate = 5.00
Time = 4.00
(i mnl e i nteresr is 200.00

2.

L]e5 /- Compute surface area and volume of a cube '/
#include<stdio.h>
ma].n ()

I
\

floatside, surface-area, vofume;
clrscr () ;

pr1ntf ("Enter the side of cube");
scanf ("%f", &side) ;

surface-area = 6*side*side;
volume=side * s ide * s ide ;

printf("\nSurface area of cube is v"2f sq. units\n") '
surface_area);

print.f ("\nVol-ume of cube ts %2f cubic units\n",volume) ;

qetchO; /* freeze the monitor*/

Output

Enter the side of cube : 3

Surface area of cube is 54.00 sq. units
Volume of cube ts 27.00 cubic uni-ts

Principles of Programming and Algorithm 3>14 Operators

3.

I*JJ

-
/' Calculate the sum oi average of five numbers r/

include<stdio . h>
main ()

t
fl-oat a, b, c, d, e, sum, aveg,.
clrscr () ;
printf ("Enter the five numbers\n,,) ;
scanf("8f?f%f?f%f", &a, &b, &c, &d, &e);
/ * echo the data *,/
printf (" \nEntered numbers arer.) ;printf (?8.2f tB.2f 8B .2f%B.2fZB.2f \n,,, a, b, c, d. e) ;
sum = a+b+c+d+e;
avg = sum / 5.0;
Print.f ("\nsum = ?2f\n", sum) ;
printf (" \nAverage=%2f \n,, , av9) ;
qetchO; /* freeze the monitor*/

Output

Enter the five numbers
10 25 38 59 13
Entered numbers are 10.00
Sum = 145.00
Average = 29.00

4.

25.00 38.00 59.00 13.00

I-t
il__l I

-

IFT]
ILJI I

/' Leap year checking'/
#include<stdio . h>
main ()

{
int. year;
clrscr () ;
prj-ntf ("Enter the year: ,,)

;
scanf ("td", &year) ;
if (((yeart4 ==0) && (yeart100 I =0)printf ("ntd is a leap year\n,,.
^t ^^

)ll(year%400==0))
year);

printf("\ntd is not a leap year\n,,, year);
getchO; /* freeze the monitor*/

Principles of Programming and Algorithm 3 > 15 Operators

Output

trntFr fhe vaar 2004
2004 is a leap year
Fh-6, rh^ .,6.f . 2005
2005 is noL a leap year

Exelcises
A. Programming exercises

t. Evaluate the following C expressions.

i. 25 /4 + 3 -7%3 +2

ii. 6.5 + (float) 512 -3 % 8 - 6.5

iii. (-r3 % 2) % (8.2) - 7

iv. (18-3'3) % (99-2'r0l I (2.5-1.5)

v. 2' ((18/5) + (6' (1.5 +I)% (10-2-1)

2. Given thatinitially i = 0, J : 2and k = 3, find xand the newvalues of i, j and
k for each of the following expressions.

i. x=i++ll+*j&&k++;
ii. x = ((i<j)llj++)&&k**;
iii. k*= (i+j) %k;

iv. x=0:=2)?k:i
v. x: (i > j) ? ++i: (k>j) ? j:i
vi. x:i++?j--:k-,
vii. k% = j = (i :4)% fi:3)
viii. ": j tk? k > i? 72:k>j? t3:74: 15

ix. k+=i++ + ++j '3
3. What will be the output of the following?

maj-n()

{ printf() ;}
main()

{ const int i = 10;

)

main()

{ printf (" H\re\r11\O") ;
main()

{ printf ("He11o\n") ;
main() ;

)

Principles of Programming and Algorithm 3>16 Operators

B. Review questions

State the different categories of operators. Explain the arithmetic operators.

Explain the use of sizeof () and type cast operator,

Explain precedence and associativity of operators,

What are the different types of C statements?

What is the difference between a statement and a block?

Are negative numbers considered true or false by C?

Discuss logical operators of C.

Explain bitwise operators of C.

Discuss various forrns of increment and decrement onerators.

BUILT.IN OPERATORS
AND FUNCTION

INTRODUCTION

All computers programs essentially read, process and display data. UnlLke other-
high level Janguages, C does not provide built-in input/output statements. Ali
input/output operations have to be carried out by using functions. Many fur1ctions lor
the above purpose have been provided in the C standard input output library
(stdio.h). included in this file are declarations forthe I/O functions and definitions of
constants (like EOF, NULL, etc.). These functions interact with the standarC input
(usually the keyboard) and the standard output (usually the screen.) Functions that
perform input-output with files are discussed in a later chapter.

CHARACTER INPUT AND OUTPUT

(getchar and putchar)
The standard library provides several functions for reacling and writing one

character at a time of which getchar and putchar are the simplest.

The function getchar reads and returns an input character from the standard input
device.

Usage

The variable is of char or integer type. getchar assigns the character value of the
input character to the variable.

Example

char c;
c=aal-clr:r/ \.

The function putchar writes a single character on the standard output device.

4 >1

Principles of Programming and Algorithm 4 Y 2 Built -in aperators and Function

Usage

Usage

Putchar (variable name

OR

I pucctrar t CtraracEer il
Example:

1. char c=geLchar () ;
nrrl-nh:r /n\ .

2. char ans = ,y, i
putchar (ans) ;

3. putchar('\ n'); /* positions the cursor t.o the beginning of
the next li-ne. * /

Character test and conuersion functions
The header file ctype.h contains declarations of several functions, which are used

to test or convert a character.
FUn'ction Description

isalnum(c) Returns true if c is an alphanumeric character.

isalpha(c) Returns true if c is an alphabet

isdigit(c) Returns true if c is a digit

islower(c) Returns true if c is a lowercase alphabet,

isuppe(c) Returns true if c is an uppercase character.

ispunct(c) Returns true if c is a punctuation mark

isspace(c) Returns true if c is white space characters

touppe(c) Converts c lo uppercase if it is a lowercase letter otherwise keeps c unchanged

tolower(c) Returns c converted to lowercase if it is uppercase and unchanged otherwise.

Example

char ch = 'a'i
putchar (toupper (ch));

will display A on screen.

Character test functions are used with control structures like if, while, etc, which
we shall study in the next chapter. However the following program illustrates how
they can be used.

Principles of Programming and Algorithm 4 > 3 Built -in operators and Function

/' Illustrates character input-output, test and conversion iunctions./

#include<stdio. h>
include<ct1z'pe . h>
main ()

{
char ch;
printf ("Enter a character: ..)

;
ch = get.char() ;
if (isalpha(ch))

i printf (" It is an alphaber,,);
if (isupper (ch))

{ printf ("\n It is in uppercase \n .,);
putchar(tolower(ch)); /* convert to lowercase -/

I
eLse

i printf (..\n It is in lower case \n ,,);
putchar (toupper (ch) 1 ;

)
1

else
printf ("\n Not an alphabet',) ;

J

Output a
Enter a character :*
Not an alphabet

Output b
Enter a character :b
It is an alphabet
It is in lowercase

Note; getch() and getche() can also be used to read a single character as
getchar(). They are defined in <conio.h>. The difference between the two is that
getche() accepts an input character and echoes (i.e displays) it on screen also
whereas getch() does not echo it on screen. getch() can be used to accept passwords.

STRING INPUT AND OUTPUT [setsO &
puts0 I

'iwo functions gets{) and puts() in the standard input output library are used for
string input and output respectively.

gets() accepts a string from stdin (Standard input device). gets() continues
reading the string, character by character until the 'Enter' key is pressed. The

Principtes of Programming and Algorithm 4 > 4 Built -in Operators and Function

newline is replaced bya NULLcharacter (\0) atttre end of the string. Spaces and tabs

are allowed within the string.
Usage f strlnqJ;

puts{) outputs a string to the standard output device. it also appends a new-line
character at the end.

Usage
n,rrc / f crrind) oY

purs(scring literal);

m
- /' Illustrates string input-output '/

#include<stdlo. h>
main ()

{ char str[8C];
nrintf ("Trzne a qirinn leqq than 80 CharaCt.erS : ");PrfrrL! \ Ju!+rrY

gets (str) ;
printf("You typed :");
puts (str) ;

)

Output
Type a st.ring less than B0 characters: C is easy!
You t.ypecl: C is easy !

|G zrFIgEJ GENERAL OUTPUT / FORMATTED
OUTPUT (printf)

The putchar() and puts() functions can be used only with character and string
respectively,

A versatile output function is printf which can handle any built-in data type and
you can specify the format in which the data must be displayed i.e. printf displays
formatted output to the standard output device. It returns the number of characters
actually printed
Syntox

int printf ("control- strinq" arn'l ara2 ernn

Control itling consists of
o Ordinary characterc that are printed on screen as they appear.

. Format specifiers or conversion specifiers, which define the output format of
each argunent.

. Escape sequences like \n, \b,\r, etc.

Principles of Built -in Operatois and Function

Formot ipccificl
r There must be exactly the same number of arguments as there are fornal

specifier in the same order.

o Each format specifier begins with a % and ends with a conversion character.
r Between the % and the character, there may optionally be,

i. A minus sign for left justification of the argument.
ii. A number that specifies minimum field width. If - is given, it implies take

next argument as field width.
iii. A period, which separates field width from the precision.
iv. A number, specifying precision i.e the number of characters to be nrinted

from a string, or the number of digits after the decimal point of a tloat
value, or the minimum numbers of digits for an integer. - means take:
next argument srze.

v. h if integer is to be printed as short, I for long and L for long double.

printf conversion character and meaning

Character Argument type Printed As
o/o

C int or char Single character
%i,%d inl Signed decimal integer
"/"x,'hX int Unsigned Hexadecimal number usinq a..f or A....F.
%o inl Unsigned octal number
%t float, double Floating point numbers 6 decimal places by default
"ke,"hE float, double Floating point numbers in exponential format
"kq,"/"G float, double Uses %e or % f v'rhichever is shorter
%p void t Pointer
o/ o/ no arqumenl Prints a %
"ku unsigned int Unsigned decimal number

printf conversion character for qualified data types

Format speeifier Argument type Output
9.:id, li !-ong Decimal long integer

-*.1,t-U Unsigned lono Unsigned long integer
9'ohd, hi Shorl Decimal short inteoer
?;hu Unsigned short Decimal unsigned short
9ilo if ln l_::,"' v l Dcuble Signed double
oz^lc lf ln i

.
,. ..,'.' .!' _ i

i-ong ioubie Signed lonq double
o/"lo Long Octal long integer

"/"lx Long Hexadecimal lon

Principles of Programming and Algorithm 4 >6 Built in Operators and Function

Examples

1.. printf("This is a string");

2. printf(" ");

3. printf("\n");

4. printf("The value of x is %d" , x);

5. printf("radius %f, area = %f" , rad, area);

6. printf(" Hi %d o/oc o/os" ,2, 'U' , "Welcome ! ");

outputs Hi 2 U Welcome !

7. The following statements illustrate the output of number 1234 in different
formats.

printf ("7od",12341;
printf (" Y"2 d", 1234);
printf (" %6d ", 1234)1

printf (" Yo -6d", 7234);
printf (" % 06 d" , 72341;

Displaying a float value in various formats

printf (" "/"f ", 72.34561;

printf (" V"8.2f.", 12.34561;

printf (" "/"1O.2e", 12.34561;

printf (" oh -!0.2e", 12.34561;

printf (" %E" ,12.3456)i

Displaying a string " Leatn, Write " with different formats.

%s

%10s

%.10s
%15 s

%-t5s
%15. t0s
% -15.10s

"/o'.'s,15,2

10. printf (" o/od", printf ("Hello"));will produce the following output :

1 2 a 3 5 4 6 0 0

1 2 a 3 5

t a 2 e + 0 I
af a 2 e + 0 1

t a 2 3 4 5 o E -f 0 I

L e a r n W r i t e

L e a r n w r I t e

L e a n w r

L e a I n w r I t e

L e a I n W r I t e

L e a r n w I

L e a I n W r i
L e

Built -in Operators and Function

FORMATTED INPUT
The general purpose input function is scanf. It

input, interprets them according to the format
corresponding arguments. It returns a number
were successfully assigned values.

Synlox;

(scanf)

reads characters from the standard
specifics and stores them in the

equal to the number of fields that

as a string and the

The argument, each of which is an address, specifies the location where the
corresponding converted input should be stored.

The control string may contain

1. White space characters.
2. Conversion specifications which consists of. ao/o sign, an optional suppression

character *
, an optional number specifying a maximum field width, an tptionat

h (for short int), I (for long int or double), L (for Long double) and a conversion
character.

3. A non-white character which causes scanf to discard the matching character.
scant conversion characters

Character Data read as
o/"d Decimal integer

"/"C Single character

%i Integer (may be in octal with leading 0 or hexadecimal with leading ox or ox)
o/oO Octal integer
o/olJ Unsigned decimal integer
o/oS Character string
o/oe,l,g Floating point number

"/"x Hexadecimal number

v4....1

search sets, which are a sequence ol characters. scanf stops reading a string
as soon as a character not in the set is encountered. lf the first character in the
set is a ^, scanf reads all characters till the first matching character from the set
is read from the input. Search sets are case sensitive.

Examples

1.

2.
3.

4.

5.

scanf ("7"f", &radius) ;

scanf ("%d 7of", &roll_num, & marks);
scanf ("%d%s", &age, fname);
(an & is not given with fname since fname will be defined
name of the stnng denotes its address)
scanf ("7ou",&n);
The value of n can be given upto 65535.
scanf (" %[abcdef]", address);

Principtes of Programming and Algorithm 4 > B Qy,n l ppsgly, and Function

This will read the input characters as long as the input characters are in the
sealr:ir set, abcdef.

6. scanf ("%[abc]" , address);
If the input given is Mumbai, only Mum will be stored in address since b is in
the search set.

7. scanf ("%d"/oll-l%d'/"ll-l %d",&date , &separator, &month , &separator, &year).
If the date is entered as : 31,-7212000 , the values assigned are

date 3 t
separator
month 12

separator I
year 2000

B. scanf ("%d ' ll-l %d % ' I l-l %d", &date, & month &year)
Here, the suppression character - is used which wiII skip a / or - (i.e not assign
them to any argument)

9. printf(" %d", scanf(""/"d%s", &a, str));
If the values given are 10 and Hello, the output is 2.

fltr coNCEPT oF HEADER FILES

C language offers simpler way to simplify the use of library functions to the
greatest extent possible.

This is done by placing the required library function declarations in special sotlrce

files, called header files. Most C compilers include several header files, each of which
contains declarations that are functionally related.

<stdio.h> is a header file containing declalations for inpuVoutput loutines;
<math.h> contains declarations for certain matliematical functions and so on.

The header files also contain other information related to the use of the libraty
functions, such as symbolic constant definitions.

The required header files must be merged with the source program during the
compilation process.

This is accomplished by placing one or more #include statements at the beginning
of the source program.

The other header files are:

<ctype.h> character testing and conversion functions'

<stdlib.h> utility functions such as string conversion routlnes , memory
allocation routines, random number generator, etc

<string.h> String manipulations functions.

<time.h> time manipulation functions.

WHAT IS A PREPROCESSOR?

A Preprocessor is a program that processes or analyzes the source code file before
it is given to the compiler.

It perlorms the fo]lowing tosks.

Replaces trigraph sequences (not covered in this book) by their equivalents.
Trigraph sequences are used to handle non ASCII characters sets.
Joins any lines that end with a backslash character into a single line.
Divides the program into a stream of tokens.
Remove comments, replacing them by a single space.
Processes preprocessor directives and expands macros.
Replaces escape sequences by their equivaient internal representation.
Concatenates adjacent constant character srnngs.

C source code

Executable

Figure 4.1

PREPROCESSOR DIRECTIVES
Preprocessor directives are special instructions for the preprocessor.

i' They begin with a # which must be the first non-space character on the line
ii. They do not end with a semicolon.
iii. Each preprocessing directive must be on its own line.
Preprocessor directives come under three categories
l. Macro substitution directive.
2. File inclusion directive
3, Conditionalcompilationdirective

4.7 .7 Macro substitutlon directloe
A macro is a small subprogram which contains executable code and is similar to a

function. Wherever a macro name occurs in a program the preprocessor substitutes
the code of the macro at that position (unlike a function). The execution is faster

since time is not wasted in function call and return.
q. Slmple substitutlon mqclo
#define macro- id val-ue

#define is a preprocessor directive that defines an identifier and a value that rs

substituted for the identifier each time it is encountered in the source file.

We have already used this directive to define symbolic constants.

The identifier is usually written in uppercase to distinguish it from other variables.

o A second #define for the same identifier is erroneous unless the second value
is exactly identical to the first.

o Use of macros enhances readability of the program.

Examples
i. #define PI 3.142
ii. #defirre TRUE 1

iii. #define AND &&
iv. #define LESSTI{AN <

v. #define GREET printf ("Hello") ;

vi. #define MESSAGE "welcome to c"
vii. #define INRANGE (a >= 60 && a<70)

Every occurrence of the macro-id in the program will be replaced by its
corresponding value.
Example
int a = 50;
if (INRANGE)
print.f ("First cl-ass") ;

b. firgumentcd]'locrot
An argumented macro is also called a function macro. The macroname can have

arguments. Each time the macroname is encountered, the arguments associated with
it are replaced by the actual arguments found in the program.

Advantage

L Their arguments are not tytrle sensitive. Therefore we can pass any numeric
variable type to an argumented macro that expects a numeric argument.

2. Argumented macros execute much faster as compared to their corresponding
functions.

Example

i.

#def ine HALFOF(x) ((x)/2)
resulL=HALFOF (10) ;

The occurrence of HALFOF is replaced by

Resutt =((10 /2));
The reason for enclosing x in () is that the parameter could also be an expresslon

in which case, the
"rpr"rrion

has to be first evaluated. If it is not enclosed in ()' it

may yield wrong results.

Example
result = HALFOF(L0+2);

This will be evaluated as

result = ((10+21 /2\;

Thus giving the correct result. If no brackets are used, it would evaluate to

resul! = (L0+2/2\ ;

thereby giving the wrong result'

ll.

#def ine LARGER(x,y) ((x)> (v) ? (x) : (y))

iii. All the parameters of the macro must be used in the substitution value' i'e'

#defj-ne ADD(x,y,z) ((x)+(Y))

is invalid because Z is not used' The correct macro is

#define ADD(x,Y, z) ((x) + (Y) + (z))

iv.
#def ine SQUARE (x) 1 (;) * (x))

v.

#define STREQL(s1,s2) (sErcmp((s1), (s2) ==0)

if (STREQL (strL, str2)

G. Nertcd J'locror
A macro name can be contained within another macro' This is called nesting of

macros.'

Example
i.
#def ine CUBE (x) (SQUARE (x) * (x))

#define MAX(a,b, c) LARGER(LARGER(a'b)' c)

l,lctror Yerto3 lonttlonr
i. Macros are small and do not usually extend beyond one line' They are used

when the code is relativelY short'

ii. Since the macro is replaced by its code, if a macro occurs many times, the final

program contains thl expanded code of all the macros; thereby increasing

Program size.

In contrast, a function code appears only once. A function has space advantage

over a macro.

Principles of Program4ng and Algorithm 4 > 12 Built -in operators and Function

iii. When a function is called, a certain amount of processing is required to pass
control to the function code and return ct,ntrol back to the caliing program.
This takes a finite amount of time.

This does not occur for a macro because the macrocode is put into the program.
Therefore, a macro has a speed advantage over a function.

4.7.2 File inclusion directiue

The file inclusion directive is the one that begins with #include. We have already
used this directive a number of times.

This directive instructs the compiler to include the specified file i.e. it replaces the
entire contents of the file at that position.
Synlox

#include<filename>
OR
#inc1ude " f ilename,'

r In the first format, the file is searched in standard directories only.
. In the record, the file is first searched in the current directory. If it is not found

there, the search continues in the standard directories.

' Any external file-containing user defined functions; macro definitions etc. can
be included.

. An included file can include other files.

Example

/*group.h */
#include <stdio.h>
#include <math.h>
#i-nclude "myf i1e. c,,
#define PI 3.742

/*m:inaraa nx/vY.v /

#include "giroup . h"
maln ()

{

)

4.7.3 Compiler Control Directiues I Conditional
Compilation

Several directives allow compilation of selective portions of the program's code if
certain conditions are met. These are,

#it
#else

#elif

#endif

They work similar to the if else statement in c. The different formats in which they

can be used are as follows

i.
if expression

sLatement-bIock
endif

ii.
#if expressaon

statement-blockl
#else

staLemenL-block2
#endi f

iii.
#if expression

s tatement-blockL
#elif expression

staLement-b1ock2
#elif expressaon

s tatement-block3
#eIse

def aulL statement-block ;

#endi f
If the constant expression is true, the statement block is compiled otherwise it is

skipped and goes to the #else part (if it exists)

Examples

i.

#define MAX 10
main ()

{ #if MAX>99
/* Code for larger atraY * /

#else
/* Code for smal-ler artay * /

#endi- f
)

ii.
#if BACKGROUND==5

#define FOREGROUND 1-

#elif BACKGROUND==8
#define FOREGROUND 0

#endi f

Built -in Operators and Function

Another method for conditional compilation is the use of #ifdef, #ifndef
#ifdef means if defined and #ifndef means if not defined.

In case of a large C program, many macros are defined in various files so it is
difftcult to remember if a particular macro has been defined or not. In such a case we
can check for its definition using the above two macros.

e Redefining an existing macro is erroneous
o Un-defining a non existent macro is also erroneous.

So the definition of a macro has to be first checked for.

Tire syntax is

#ifdef macro-id
stat.ement_b1ock

#endif

#ifndef macro-id
stat.ement_b1ock

#endi f
Example

#include "declare. h,,
#ifndef FLAG

#define FLAG 1
#endif

0n-dcflnlng o mqcro
A macro can be undefined using the # undef directive.

Exasgtle #ifdef FLAG
#undef FLAG
#define FLAG 0
#endif

#ifdef and #endif can be used to compile and run debugging code in the program.
Exa.aple #define DEBUG 1

main ()

{_
*itA"t DEBUG

/* debugging code put here */
#endif

-iAnother important use of conditional compilation directive is when a program has
to be run on different machines. In such a case, the common part of program can be
run and the machine dependent program part can be conditionatly iompiled as
shown below.
ma].n()

t #ifdef IBM-Pc
{ code for IBM-Pc}

Principles of Programming and Algoithm 4 > 15 Built -in Operators and Function

#else
{ code for HP machine}

#endif)

1. Let us write a program to accept temperature in 0C and convert it to'Fahrenheit

using formula temp- in- o F : ! ' ,"*n-in- 0C +32.

f This program converts temperature in degree Centigrade to Fahrenheit */
#include<stdio. h>
main ()

{
float cent.igrade, fahr,; /* decl"arations*/
printf ("Enter t.he temperature in Centigrade z");
scanf ("8f", &Centigrade); /* accept input */;
fahr = (9.0/5) * cenLigrade + 32;
printf ("\n temperature in CenLigrade = tf", centigrade);
printf (" \n temperaLure in Fahrenheit tf" , fahr);
l

Output
Enter the temperature in cent.igrade: 37
Temperature in centigrade = 37
Temperature in Fahrenheit = 98.599998

Write a program to calculate the distance between two points, using formula.

d=

fifl
-

ir]]4

-Q. /'to calculate the distance between two points whose coordinates are
(xl,yl)and lx?,y2l'/

#includecst.dio . h>
#includecmath. h>
main ()

{ int x1, x2, yL, y2 ;
float d;
printf("Enter the coordi-nates of the first point:");
scanf ("tdtd", &x1, Ay1) ;
printf("Enter the coordinates of Ehe second point:");
scanf ("8dtd" , &x2, &y2) ;
d = sqrt((y2-y1l*(y2-y1)+ (x2-x1)*(x2-x1));
printf ("The distance i-s ?lf ",dl;

J

(y, - y, ;2 + 1x, - x,)2

Principles of Programming and Algorithm 4 b 16 Built -in Operators and Function

auQut
Enter the coordinaLes of t.he first point:10 0
Enter the coordinates of the second point : 0 l-0
The distance is 14.142L36

3. Program to converl titne in seconds to equivalent hours, minutes, and seconds.

ErlE /' This program converts seconds to hours, minutes and seconds'/

#include<stdio. h>
/* Define constants */
#define SECOIVDS*PER*MIN 60
#define MINS-PER-HOUR 6O
main ()
r..*^l ^'. -r i -! ^^^anAc m.i n.'f na hnrrrq connndq Iof r mi nc I of t .\ ulr>rvlrgu IItL -gguIjuD, lLLf lluLc>, t.-*- -,printf("Enter the number of seconds 2");
scanf ("%u", &seconds) ;
hours = seconds / (SECONDS_PER_MIN * MINS_PER_HOUR) ;
minut.es = seconds / SECONDS_PER_I"ITN;
mins_]eft. = minutes % SECONDS_PER_MIN;
seconds_left = seconds % SECONDS_PER_MIN;
nri nf F ("*rr Spcond^ ^-^ ^-"1--^r ^-- F^ . " cannndc\ .y! rrru! \ ou rLUvrru> d!g E\iuavqlcitL __
printf("%u hrs %u mins %u seconqs",hours, mins_leIL,

seconds*lefL);
I

Output a
Enter the number of seconds : 60
60 seconds ara 6^,ri":Tanf tsr): 0 hrs 1 rnins 0 secondS

Output b
Enter the number of seconds : 20000
20000 seconds are eguivalent to : 5 hrs 33 mins 20 sec,rnds

H.x.s.r,s.i..$.e.s
A. Select the Appropriate Answer

1.
main ()

{ j-nt. i ;

printf("%d", i);
)

a. error

c.0
b. garbage

d. 32767

Principles of Programming and Algorithm 4 > 17 Built -in Operators and Function

2.
main ()

3.
main ()

4.
main ()

5.
nr:in I I

6.
m: i n / \

t

{ int i = 10;
float.) = 20;
nrinff 1"*,1 " qizaaF(i+itt

\L'J | | ,

l
a.2
c. 1

)
a.0
c. 34

i
a.

c.

b.4
d. 30

{ char ch = 'ABC';
printf ("%c", ch) ;

i int i,
r = 0xl-0 +

nrint- F l\94il
F! 4rf u! \ es

error

A

int i- = l-0
a-Lra/

nri nf + t \9A
yr f]f e! \ es

1....12

error

010+10;
rl.

b. error
d. garbage

b. ABC

d. ch

++ l

2r1 il : i \Lt,

b. 10....10

d. compiler dependent

{ pr j-ntf (" \nH\ne\n11\ro,,) ;
]

H
^Ha. i 0."
ool

c. Hello d. O

a.

c.

Principles of Programming and Algoithm 4 > f 8 Built -in Opera'tots and Function

7.
main ()

{inti=10,)=20i
.i ^_-.i . .i ^_.i . i ^_i .r -J t) -L, L -J'

printf("td, ,td" ,i,j);
l

a. 10....10 b. 10....20

c. 20....10 d. 20....20

8.
enum colorsiBLACK, BLUE, GREEN);

main ()

{ printf("td..td..td", BLUE , GREEN , BLACK);
)

a. error b. Blue, Green Black

c. 0...,1...,2 d. 1...,2...,0

9. " The stock's value decreased by 10 %"
Which of the following exactly reproduces the above message?
a. printf(" The stock's value decreased by 10 %");
b. printf(" \" The stockVs value decreased by %d \ 7" \.\"\n", t0);
c. printf ("\" The stockYs value decreased by % d Y"%.\ "\n" , 10) ;

d. None of the above.

B. Predict the outputs

1.
main ()

{ inta=300*300,b;
b = a/2;
printf(* td Bd", a,b);

)

2.
nain ()

{ char ch = 'A';
inti=2;
floatf=++ch+i;)
print,f ('tf tdtc", f , ch, ch) ;

3.
main ()

{intx=1-2,y;
Y = x--;
Y - =--x;printf ("8dtd" ,x,y);

i

Pinciples of Programming and Atgorithm 4 b 19 Buitt _in Operators and Function

4.
maini)

{inta=5,b=l-0;
printf (,. td\n,,, a++ + b++ + ++a + ++b) ;a=5;b=10;
printf (" I d \n ., , *-fd. * ++b) ;a=5;b=10i
printf(" td\n", d = ++a * ++ b);

)

c.
main()

{ int FLoat = 2, pi = 3.1,4;printf ("8f8f", Float. , pi) ;
)

0.
main ()

{ int i,
i=32000+1536+10*0;
printf("?d", i);

i

7.
main ()

i int x,y , z;
X=y=Z=_t;
z = ++x && ++y | | lazi
Printf ("x = td, y = td, z = td", x,y,zli

]

B.
main ()

{ char c = 'z',ch ;
c = c +.ar-rA ,;
ch = c -iar+tAr-prrntf ('rtc,,,ch);

)

9.
maln ()

i int i = 1.0,5 ;print,f ("td,, i) ;
t

lo.
rurc ia (!
{ ccr-- :.nt x;

x = 130;
prrntf (.,td",x; ;

]

Principtes of Programming and Algorithm 4 Y 20 Built -in Operators and Function

11.
#defj-ne GREAT "xyz"
main ()

{ printf (GREAT) ;

)

t2.
#define GREET HELLO
main ()

{ print.f (GREET) ;

]

13.
main ()

{ #include <stdio.h>
) ,.

t4.
#define MAIN maino
#define BEGIN
{
#define END

]
#define GREET printf ("HeI]o")

MAIN
BECIN

GREET;
END

1!

15.
#define SQUARE(x) (x*x)
marn ()

i int t = 20, j=10,k;
k = SQUARE(i-j)
printf ("%d", k) ;

i

16.
#def ine SQUARE(x) (x)* (x)
main()

{ int i = 20,j=1-0,k;
k = SQUARE (i-j) ;
printf ("%d", k) ;

)

t7.
#oer]-ne t. LALt
* 1f OeI !.LrAG

int i = 10;
#enoi f
main()

{ int i = 5;
printf (":3d", i) ;)

lll:g!"t "t
Pt"gt"*^irg t

18.
/*File abc.h x/

pr-Lncf ("He11o") ;
/* File my.c * /
main ()

{ #rnclude "abc.h"
printf("C");

]

19.
/*Fife xxx.h */

prj-ncf ("HeI1o")

/* Pile my.c * /
main ()

i #include "xxx.h"

printf("C");
i

C. Programming Exercise

1. Find the roots of a quadratic equation using the formula,

Accept values such that b' > 4ac

2. Accept the basic salary of an employee and calculate and display the following.

Dearness Allowance (DA) = 150% of basic

Income Tax (IT): 30% of basic.

Provident Fund (PF) : 8.33% of basic.

Net SalarY = Basic + DA - (IT + PF)

Accept two numbers and interchange their values.

Given the three sides of a triangle, calculate its area using
where a,b and c are the three sides and s is the perimeter.

The freqnency of an electrical circuit is

E _^8,n = \ LC - 7tr ',^/rite a program that accepts Inductance (L) Capacitance

(C) and Resrstance (R) of the circuit and calculate its frequency.

\A/r'i+. a pr(.)gram to accept a character from the keyboard and check if it is an
alphabet, digit or special symbol. if it is an alphabet, check if it is uppercase or
lowercase. If uppercase, convert if to lowercase & vice-versa.

4.

Built -in Operators and Function

D. Revierv Questions

1.

').

4.

Exp-lain the functions getchar and putchar with examples'

Expiain the format specifiers used with the printf functions.

Explain search sets in the scanf function with examples.

Is there a difference betlveen:

printf ("Hello") ; printf ("World");and

puts ("FIello"); puts ("World");

What is the difference between getch() and getche() ?

Whai forinat specifiers are used wlth scanf ?

Write a note on the C Preprocessor.

Explain Macro substitution in brief with examples.

When an argumented macro is defined, why should each argument be enclosed
in parentheses?

Do header files need to have a .h extensiorr?

Illustrate the use of #ifdef and #undef with examples.

Explain any four preprocessor directives.

6.

8.

9.

10.

t|.
LZ.

CONTROL STRUCTURES

INTRODUCTION

in the previous chapters, we have studied some basic input output functions. We
have also seen the different types of C statements. In this chipter, we shall be
stttdying the program control statements, which specify the order in which
instructions are executed.

Sometimes, it is necessary to alter the sequence of execution of statements based
on cettain conditions or we Inay require some statements to be executed repeatedly
until some condition is met. This involves decision-making, and looping. ln iaaltlon
we shall also be studying the jump statements, which allow breakins out of decision
and loop control statements.

SETECTION / DECISION MAKING
STATEMENTS

Many programs require testing of some conditions at some point in the program
and selecting one of the alternative paths depending upon the result of the condition.

C provides three mechanisms to check for conditions and execute or skip cefiain
parts of the program. The three decision-making statements are:
L if statement
2. if-else statement
3. switch statement

5.2 "1 if statement
This is the simplest form of decision-making statements in C. It allows decisions

to be made by evaluating an expression. Depending upon the result (True or False),
the program execution proceeds in one direction or another. Basically it is a two-wav
decision statement.

The simplest form is:

if (expression)
stat.ement

5 >1

Principtes of Programming and Atgorithm 5 > 2 Control Structures

Noler Here, statement could be either a single statement or a black of statements

(enclosed in braces) as shown below. Henceforth, we shall use Statement to imply

both.
i f { expression)

statement;
.single statement

if (expressi-on)
{.....

statements;

;

more than one statement

The keyword if must be followed by a set of parentheses containing a single

expression to be tested. The statement is executed only if the expression is true (i e'

non-zero;. If the condition evaluates to false, the statement is skipped.

Example

i.

if (n < 0)
printf ("The

ii.
if(age < 30 &&

printf ("You

number is negative") ;

salary >l-0000)
are young and rich !I");

llr.

if ((n % 3 == 0) && (n % 5 = = 0)
prantf ("The number is divisible

)

hrz ? and 5");

Figure 5.1

Principles of Programming and Algorithm 5 >3 Control Structures

iv.
/L-^:^ --1 - "^^10)\!a-r.9_Dql / luu\
t

it = 30.0 * basic _ sal / L00;
da = 200.0 * basic_ sal / 100;
hra = 800.0 ;

5.2.2 tf Else statement
The 'if' statement will execute the statement if the expression is true otherwise it

will be skipped.

However, in many cases we require an alternate statement to be executed if the
expression evaluates to false. This is possible using an ifelse statement.

The general form is,

if/avnroccinn\

stat.ement.l
ef se

statement.2
Here, the expression is evaluated. If it is true, statementl is executed and if it rs

false, statement2 is executed. Thus, either statementl or statement2 will be
executed; never both.

Figure 5.2

Examples
1.
if (a >b)

nrinF€ /
v! rrlu! \

e1 se
nrintf/

2

if (year eo 4 == 0 && year I 100 != 0 ll year % 400
printf ("%d is a feap year,,, year) ;

else
printf ("*d is not. a leap year,,, year);

This can also be written using the conditional operator ?:
(year %4 == 0 && year I 100 != 0 I I year % 400 ==printf ("leap"): printf (..Wot Leap,,);

0)?

tt: ic larnarl\. ,t

"b is larger") ;

if else statemenl

Principles of Prognmming and Algotithm 5 > 4 Control Structures

3.
if(numbert2==0)

printf ("The number is even") ;
else

print,f ("The nurnber is odd") ;

4.
if(basic_sa1 < 10000)
t

it=20*basic_sal/100;
da = 150 * basic_sal / 100;
hra = 500;

)
else

{it = 30 * basic _sa1/100;
da = 200 * basic_sal / 100;
hra = 800;

)

5.2.3 Nested lt ...else statements
As seen earlier, the if clause and the else part may contain a compound statement.

Moreover, either or both may contain another if or ifelse statement. This is
Called as nesting of ifelse statements.

This provides a programmer with a lot of flexibility in programming. Nesting
could take one of several forms as illustrated below.

i.
if (expressionl)

statementL
else

if (expression 2)
stat.ement2

ii.
if (expressionl)

if (expression2)

st,at,ementl
else

if (expression3)

statement2
iii.
if (expressionl)

if (expressionZ)
stsa!ement,1

Principlx ol Programming and Algoithm 5 > 5 Control Structures

efse
statement2

else
st.atement3

iv.

if (expression 1)
statement. L

e1 se
if (expression 2)

st.atement 2
else

statement. 3

v.

if (expressionl)
if (expression2)

statementl
else

statement2
else

if (expression3)
statement3

else
stat,ement4

Examples

i.

if (a >b)
if (a > c)
printf ('.a is largest.") ;
else

printf("c is largest")
else

if (b > c)
printf ("b is largest")

else
printf ("c is largest,,) ;

ii.
if ((ch >= 'a'&& ch <= 'z') ll (ch > 'A'&& ch <=,2,))printf (" tc is an alphabet" , ch) ;
else

if (ch >= '0'&& ch< ='9')printf ("tc is a digit.", ch) ;
else
printf(tc is a special symbo1", ch) i

Nofer It is a good idea to enclose each of the 'if' and 'else' blocks in braces if the
logic is complex.

Example: A recruitment agency recruits candidates satisfying the following
conditions.

Principles of Programming and Algorithm 5 > 6 Control Structures

i. If the candidate is male, between 25 and 30 years of age, height above 160 cm

ii. If the candidate is female, betrveen 20 and 25 years of age with height above
155 cm.

The if-else construct for the above can be written as follows:

if (sex == 'M')
t

if (age >= 25 && age <= 30)
if (heighL > 160)

printf ("Candidat.e is recruited") ;
)
el-se ,/ * CandidaLe is Female " /
{
if (age >= 20 && aqe <- 25)

if(heishr > 155)
prinLf ("Candidate is recruit.ed") ;

j
Note: eise always gets associated with the nearest if statement. Hence { } shor.rld

be used to associate the else with the correct if.

5.2.4 The else - if ladder
If there is an if else statement nested in each else of an if- else construct, it is

called an else - if ladder as depicted below.

if(expr1)
statement.l;

else
if(expr2)

statement2;
el se

if(expr3)
statement3;
else

statement4;

This can also be written as

if(expr1)
statementl;

else if (expr2)

statement2;
else if (expr3)

statement3;
e1 se

statemenL4;

The conditions (expressions) are evaluated from the top downward. As soon as a
true expression is found the statement associated with it is executed and the rest of
the ladder is bypassed. If none of the expressions are true, the final else is executed.
The last else often acts as a default condition i.e. if all other tests fail, the last else
statement is executed.

If it is not present, no action takes place if all other conditions are false.

Principtes of Programming and Algorithm 5 > 7 control structures

Examples

1. To check whether a character entered from the keyboard is an alphabet' digit'
a special symbol or punctuation mark.

if (isalpha(ch)/*ch is the characLer variable storj-ng the
character */
printf (11%C is an alPhabet", ch) ;

e1 se
if (isdi-sit. (ch))

print.f ("%c is a digit". ch) ;

else
if (ispunct (ch))

printf("%c is a puncLuation mark" , ch);
else

printf(%c is a special symbol", ch);

2. To iind class of a student from the marks.

if (marks >= 70)
printf ("DisL j-nction") ;

else if (marks> = 60)

printf ("First cl-ass") ;

else if (marks> = 50)
printf ("second class") ;

else if (marks>=4O)

printf ("Pass cl-ass") ;

5.2.5 The switch statement
Whenever one of many alternatives is to be selected, nested if - else statements

can be used. Howevel, the structule becomes very complicated and the code

becomes difficult to read and trace.
For these reasons C has a built-in multiple-branch decision statement called

switch. This statement tests whether an expression matches one of a numbel of

constant integer values and branches accordingly'
The format is

swiLch (expresslon)
{
case const--exPr1 : sLatement
case const.-exPr2 : statement
case cons.-"":tt : statement

default : statement
t

As mentioned before statement implies a single statement or a compound

statement.

Pinciples of Programming and Algorithm 5 >8 Control Structures

o The expression enclosed within parentheses (integer expression) is
successively compared against the constant expression (or values) in each
case. They are called case labels and must end with a colon (:)
The statement in each case mav contain zero or more statements.
multiple statements for a case they need not be enclosed in braces.

All case expressions must be different.

The case labeled default is executed if none of the other cases
default case is optional and if not included , no action takes place
other match.

Cases and the default case can occur in any order.

More than one case value may be associated with a particular statement

a

a

a

a

If there are

match, The
at all if none

tEi
/' Use ol switch statement '/

#include<stdio. h>
main()

{ int number ;printf ("Enter a number between 1 and 3 :,'\;
scanf ("%d", &number) ;
swj-tch (number)
\

case 1 : puts("you entered 1\n,,
case 2 : puts("you enLered 2\n,,
case 3 : puts("you entered 3\n,,
defauLt : puts ("Out of range\n,,

1

Output
EnLer a number between 1 and 3:2
You entered 2
You entered 3
Out of rangie
However, this is not the required output. The output is like this because when a

match occurs, not only the statement associated with the matching case is executed
but those of all the remaining cases are also executed. Using a break statement can
solve this problem.
Ore ol breqk ttqtemcnt

The break statement is used to exit a control structure. As soon as a break
statement is encountered, program control is transferred to the first statement outside
the structure to which the break belongs.

In the above program, if a break statement is included in every case, as soon as a
match is found, the statement(s) of the matching case witl be executed and the break
statement will take control outside the switch statement as illustrated below. The
default case need not have a break statement since it will the last case executed if no
others match.

Principles of Programming and Algorithm 5 >9 Control Structures

Example

itit.:- Illustration of switch using break
#include<stdio. h>
main ()

{int number;
printf ("Enter any number between 1 and 3 :

scanf ("%d", &number) ;
qr^ri Fch (nrrmhor\

i
case l_ : puts ('.you ent.ered 1\n,,) ;

break;
case 2 : puts(.'You entered 2\n',);

break;
case 3 : puts(..you entered 3\n,,);

break;
def aUlC ' nrrf q 1\'|)rrf nf rangg. \n,,) ;

Output a
Enter any number between 1 and 3 :2
You entered 2

Output b
Enter any number between 1 and 3:10
Out of range.
Note: To associate more than one case value with a particular statement, you have

to simply list the multiple case values before the common statement (s) that are to be
executed. This is called-falling through cases.
Examples
1.
switch (operat.or)
{

;;;. \ *,
case 'X'

...J

2.
q\^ri tdh /n\

{ case '0'
case ' 4' :

case 'B' :

: case '1' use:
case '5' : case
case '9' : diqit

: case \n : case

case '2' : case '3'
'6' : Case '7':
++ ; break ;

r\l- ' . r^rhii-a cna-6vv_Jvsv! + + - }. ro:lr.l

:

: result = valuel- * value2;
nri ni- f | "*f ,, racrr'l I I .

, !vrq1e/,

break;

Principtes of Programming and Algorithm 5 > 10 Control Structures

Ncstcd'switch' stotemcnt
It is possible to have a switch statement as a part of a statement in another switch

statement. Even if the case constants of the inner and outer switch contain conmon
valnes there is no conflict. Example
switch (x)
{ case 0 : printf ("Invafrd value") ;

break;
case l : swi Lch (Y)

{ case 0 : prinLf ("values are 1 and 0");
break ;

case 1 : Printf ("vafues are 1 and 1");
break;)

break;
case 3 :

:

I
J

Comporing if-elsc ond switch stotements
Although both these statements can be used for multi-way decision-making, there

are some differences between the two, which are crucial for the selection of one ol

these in a program.

No. lf --else structure Switch statement

The if-else structure allows only two-way
branching frorn a single expression

lrtgz/
slatement 1

if (expression) </
raa-}..._

- Statement 2

Switch allows multi-way branching
from a single expression.

Case value 1

Case value 2
switch (exp0

ll.
The nested if-else structure is nonelegant and
comolicated

Switch statement is very elegant and
easier to write.

iii.
lf multiple alternatives exist, the nesting can go to
many levels and it becomes difficult to match the
else part to its corresponding if.

No such problem occurs us:19 a

switch statement

tv. Debugging becomes difficult
Tracing of errors and debugging is

EASV.

v.
The test expression can be a constant expression
or an expression involving relational or logical
ooerators. Float and double are also allowed.

Only constant integer expressions
and values are allowed.

vi. Multiple statements within if or else have to be
enclosed in braces.

The statements belonging to a case
need not be enclosed in braces.

5.2.6 Conditional operators
The ternary operator? : can also be used for decision-making. We have aiready

seen how this operator works. The general form j.s

exprl? expr2 : exPr3

If exprl is true, the entire expression takes the value of expr2 else it takes the

value of expr3.

Principles of Programming and Algorithm 5 > 11 Control Structures

Examples

1.

char ch;
etr = cel-cher/ \----...-. , ;
x = (ch>= 65 && ch <= 90) ? 1: 0;
x? puts ("Uppercase alphabet") :pucs ("Other character") ;

This piece of code checks if character ch is an uppercase alphabet.

2. The following statement assigns the largest of three numbers (a,b,c) to x.

x= (a>b) ? (a>c) ?a: c : (b>c) ?b: c;

ITERATIVE STATEMENTS (LOOP
CONTROL STRUCTURE)

A segment of program code that is executed repeatedly is called a loop. The
repetition is done until some condition for termination of the loop is satisfied.

A loop structure essentially contains

i - atestcondition
ii. loop statement(s)

The test condition determines the number of times the loop body is executed. It
involves evaluating a loop control variable(s), whose value has to change within the
loop body so that the loop execution can terminate.

Tlte iteration proced.ure takes place in four steps.

. Initializing the loop control variable.

o Execution of loop statements

. Changing the value of the control variable

r Testing the condition.

Depending upon when the loop condition js tested, loops can be of two types:

1. Top-tested loop (entry controlled loop)

2. Boitom tested loop (exit controlled loop)

In an entry-controiled loop, the condition is evaluated before the ioop body rs
executed. In the bottom tested or exit controlled loop, the condition is tested after the
loop body is executed.

Principles of Programming and Algorithm 5 >12 Control Structures

Top-Tested or Entry
controlled loop

Bottom Tested or Exit
controlled loop

Figure 5.3

The C language provides three loop sfruclures Ior use in programs.

1,. while statement

2. do...while statement
3. for statement

5.3.7 The
The while loop is

times the loop is to
condition.

It is an entry-controlled loop i.e. the condition is tested before the loop body is
executed.

The expression is the test conditions and can be any valid C expression.
The statement can be a single or compound statement.

]low it works?
o The expression is evaluated and the statement (loop body) is executed as long as

the expression is TRUE (non zero)

r As soon as the expression evaluates to false, the execution of the loop body is
stopped and control is transferred to thc first statement outside the loop body.

. Since it is an entry-controlled loop, if the expression evaluate to false the first time
itself, the loop body will not be executed even once.

while statement
the simplest ioop structure. It is often used when the number of
be executed is not known in advance but depends on the test

ntax of the loo

ures

Example: Program disptaying all even numbers below 50.

/x Demonstration of a simple while loop *,/
#include<stdio. h>
main ()

{ int even_number = 0; /* fnitialization */
whlle(even_number < 50) /" Loop condition */
{

printf ("Bd \tt", even_number) ; /*Display */
even-number = even_number+2;/*change value of loop variable*/

]
)

Polnts to rcmcmbcr
o The loop control variable(s) must be initialized (i.e. given some value before thecondition is tested)

o The loop body must contain a statement to al.ter the value of the control variable.

Examples

1. Calculate the sum of numbers from 1 to n (user specified) i.e. 1+2 *3 *. . . +n.
m.- /' Illustrates while loop ./
include<stdio . h>
main()

{int sum = 0, n, loop_var -1; /* fnitialization*/
printf (..enter the value of n : ..);
qc:nf l$gAz f-h\.

\ vg ,qlf/,

while(loop_var.-n)
t
sum=sum+Ioop_var;
loop_'v-r++;

)
printf ("\n The sum of numtrr"rq frnm -r fn eA i- qi , Tt, sum) ;

lEtle5

of numbers from 1 to gd is td,,

Principtes of Programming and Algorithm 5 > 14 Control Structures

2. To accept characters from the keyboard tiII the user enters ' and count the total
number of alphabets entered.

iiil
;=q

inc lude< s Ldio . h>
main ()

{
char ch;
i-nt counter = 0;
.h = npj-.hnr(). /* Gef fhe f irsL character */
uI! - YeLvrrrr! \ , ,

while (ch ! ='*')

{ if (isalpha(ch)) /* check if ch is an alphabet */
^nrrnl6r++qh = getchar(); /* alter value of loop variable */

]
printf ("Number of alphabets are %d", counter) ;)

The loop con be written in another wdy os shown:

while((ch= getchar()) !='*')
t

if (isalpha (ch))

counter++;

Here, ch: getchar() is enclosed in () because != has higherprecedence over =
The character has to be read first and then compared. Hence the ().

3. Accept numbers, as long as user says 'y' and calculate their sum

m /' Program to accept numbers, lrom the keyboard as long as the user says
'y'and find their sum '/

#incf ude<st.dio . h>
main()
I ^L--\ !rlq! qrrD - y ,

intsum=0,num;
while (ans -- 'y')
{ nrint-f("enter the number :");

scanf ("3d", &num) ;
sum = sum + num ;
n.in+- f /s\n riln rrnrr r^r^nf to conl- intto ltrln)'")P! IrrLr \ \rr uv _Yvu wqrau \l I Ltt '
ans = getchar();

)
nri n+. f /\\\n .r.ho gq1n is %d,,, sum) ;

Principles of Programming and Algorithm s D 1s control structures

4. "To find sum of digits of an integer.

/'Program to accept an integer and calculate the sum oi its digits ./

#include<st.dio.h>
main()

{ int number, sum = 0 ;printf (.'Enter the number : .,)
;

scanf ("%d", &number) ;
whr]e(number > 0)
{

sum = sum+(number%lO);/*add the last digit of number to sum */
number= number /10 ; /* Get the remainino dioits in nrrrnfsl xi

i)
printf (,,\n The sum of digits is ?d,, sum) ;\

)

Output
Enter t.he number: 32i
The sum of digl-ts is j-2

5. To reverse a number

l-1
9:\ /' Program to reverse a number i.e. if user enters 324, the output should be

423'/

#include<stdi-o . h>
main()

{ int num , rev_num = 0;
printf("Enter the number to be reversed ,,);
scanf ("%d", &num) ,-

while (num>0)
{
rev_num = rev_num * 10 + (num % 10);
num = num /10.

i
pri.,r-f (-'In The reversed number is %d,, rev_num) ,.

)

OutBut
EnEer tLe ,"rrrrt>er to be reversed 5678
The re"v*rseri nurnber is 8?65.

HestEd'uthlle' stqtemcilt
ri!r>, lrkc tli{.i 'iI' statement, rr'hile siatements can also be nested. Nesting of loops

iilrrlrs a loop that rs containi,.i wilhin another loop.

while {expr1)
i

urhi lo lovnr)\
\ v.!y!

- /

Principles of Programming and Algorithm 5 Y 16 Control Structures

{
loop body of while (expr2);
)

]

Nesting can be done upto any levels. However the inner loop has to be completely

enclosed in the outer loop. No overlapping of loops is allowed'

Nesting of loops is required in many programming exercise like multidimensional

arrays etc.

Example Program: To display the following structure

I

12
r23
r234
l.e. 1 to n rows and numbers from 1 to n in the n'r' row'

f P.ogtum to display triangle of numbers'/

#include <stdio.h>
main()

{ intn, line-number, number;
printf("How manY lines: ");
scanf ("8d, an) ;

Iine-number = 1 ; /* IniLialize line number * /
whilE (line-number <=n) /* line number goes from 1 to n */
t number = 1 ; /* display begins from 1 */

while (number <= l-ine-number)
{ Printf ("Bd\t " , number) ;

number++; /* next number */
i
printf ("\n");
line-number++ ; /*. next line*/

In the above program, the outer while loop is for the lines from L to n' For each

line, we have to pnnt numbers from L to the line numbers. This is done by the inner

loop. i.e. for every value of line-numbers, number takes values from]. to

Iine_number.

5.3.2 The do-while looP

The second iteration statement provided by c is the do-while statement'

The while loop seen earlier is top-tested i.e. it evaluates the condition before

executing any of the statements in its body. The do-while loop, on the other hand, rs

a bottom-tested or exit controlled loop i.e. it evaluates the condition after the

Principles of Proaramming and Algorithm 5 > 17 Contrct Structures

executron of statements in its construct. This means that the statement within theloop are executed at-least once.

The syntax is

do
{ statement)

while
(ex ressi_on)

The statement (single or compound) is executed as long as the expression is true.
Note the ; following the while.

The sequence of events is: i
1. The statement(s) in statement are executed.

2' Expression is evaluated. If it is true, execution returns to
execution of the loop terminates,

Example

do
{ printf (.'\n 1 - Add a record.,,);printf (.'\n 2 - Delete a record,,);printf (,,\n 3 - View Records,,);printf (,.\n 4 - euit,,);

Printf (" \n Enter your choice: .')
,.scanf ("8d" &choice) ;switch (choice)

{
case l_ : add();

break;
case 2 : delete();

break ;
case 3 : view();

break,.
case 4 : printf ('.Bye");
)

)while (choice t=4) ;

The above program code shows a do while loop, which displays a menu andaccepts a choice.

In this case, we want the menu to be displayed and choice to be accepted at leastonce and so a do_while loop is preferred.

step 1. If it is false,

Principtes of Programming and Algorithm 5 > 18 control structures

il THE FoR LooP

The for loop is very flexible, powerful and most commonly used loop in C It ts

useful when the number of repetitions is known in advance'

This is a top-tested loop similar to the while loop but the advantage is that it
combtnes the initialization test condition and loop variable alteration statement in a

single statement.

The syntax rs:

Far lovnr1 . ovnr?. : exnr3)\ s^v! r

statement

where exprl is the initialization expresslon

expr2 is the test condition

expr3 is the uPdate exPression

These three expression have to be separated by semicolon (;)'

The above loop is equivalent to

exprl;
while (expr2)
i statement

expr3;
)

Execution of a for looP
. exprl is evaluated only once i.e at the beginning. This expression performs

initialization of the loop control variable (Multiple initializations can also be done

as seen later)

. expr2 is the test expression, which is evaluated before execution of statements irr

the loop. The statements are executed only if the test expression is true. If it is
false, the loop execution terminates. Note that there can be only a single test

exnression.

Execution of for

Example:

for (r= 1 ; i <=100 ; i++)
printf ("%d \n" . i) ;

i = l- -+ irritialization

. expr3 is the update expression, which alters the value of the loop control variable,

rl /-\
for (ExPr 1 : ExPr2 ; ExPr3)

_/

Principles of Programming and Algorithm S D 19 Controt Structures

i <: 100 --+ test expression

r++ -+ update expression

Different forms ot the 'for' loop.
i. for(i=0;!<25;i++1

sLatement i -) single statement

ii. for (i = 0; t < 25 ; i++;
{ statement ,-

st.atement; -+ compound statement
)

iii. for (i = 0 ; t < 25 ; i++)

or
for (i = 0 ; t < 25 ; i++); -> loop with no body.

iv. for (i = 0 j = Q ; i < 25 ; i++, j++)
statement ; -) Multiple initializat.ion and

mrr'l +.inla "gql4geS Separat.ed;;;;"il; -'

v. for (; r < 25 , i ++) -+ Initialization expression not used.

vi. for (; t < 25 ;) --+ Initializat,ion and update
expresslon not used

vii. for (; ;) -+ All three not used.printf ('.Forever \n,,) ;

Examples:

i.

for(i=1,j=50;i<-20 | ljt=fO;i++ i--)printf (" \n td 8d" i, j) ;

ii.
f or (temp-0 ,' Lemp<=5 0 ; temp=gsmp+5)

{
fahr = (9*temp) /5 + 32);
pri-nt.f ("\n centigrade = ?f Fahrenhei-t = %f,,.rcmn f:hr\.

}-|LgL'Ll|

iii.
,/* Accepts values from user til_l 99 is entered */

int num = 0;
for(;num!=99;)

scanf ("td", &num) ;

Principles of Programming and Algotithm 5 > 20 Controt Structures

iv.
f or (i = 0 ; ++i<1-0;)printf ("td \n',,i)
Example

1. calculation of factorial of a number. we know that n! = n x (n-1) x (n-2)x1.
Thus we have to repeatedly decrement n by 1 till 1 and multiply each value to
the previous product.

Note: we can also increment from 1 to n and perform multiplication.

/' Calculation of factorial '/
*includecstdio . h>
main()

{ int num, product ;
printf ("Enter the number z") ;
scanf (" td", anum) ,.

for (product = 1 ; num >= 1 ; num--)
product, = product * num,.

printf("\n the factorial is td,,,product);
I

Output
Enter the number : 5
The factorial is 1-20

Note: The for loop could also have been written as :

for (i= 1, product = 1; i < = num; i++;
product = product 'i ;

2. To calculate xv where x is a float and y is an integer.

/' Calculation of xY '/
*include<stdio. h>
main ()

t
float x, power = 1-, i ;
inty;
printf("Enter the base and power i"l
scanf ("tf td", &x, &y) ;
for (i=1; i<-y; i++)

POWef i= X ;

. printf ("\n *f raised to td is tf ",x,y,power);
t

for (i=1 ; i=25; i++) -1rl
I'ior

tj=l; j<=l-0; j++)-l I, | " louterfoopt I rnner ror r_oop
I]rr

tJ

Pinciples of Programming and Algorithm 5 > 2l Control Structures

Output a
Ent.er the base and power : 2 3

2.000000 raised to 3 is 8.000000

Output b
Enter the base and power : 2.5 2

2.500000 raised to 2 is 6.250000
tlestlng for stqtenentr

One for statement can be written within another for statement. This is called
nesting of for statements as illustrated below.

Here, for every of i, the inner loop wili be executed ten times.

Exomples

1. We had earlier written a program to display a triangle of numbers using the
whiie loop. Another triangle is now illustrated using a for loop. The following
triangle is called the "Floyd's triangle".

I

23

456

78910

int n, line _number, number, count,'
printf(" How many lines?");
scanf ("td", &n) ;

number = 1;
for (line_nunber =L; line_number <=n ,1ine-number++)
t
for (count =1;count<=l-ine-number; count++)

mes /' To draw a Floyds triangle using nested for loops '/
#include<stdio . h>
main()

T

Principles of Programming and Algorithm 5 > 22 Control Structures

tDl,:1 /t Display a rectangle of n rows and m columns '/
#i-ncl-ude<stdio . h>
main()

{ int n_rows, mcol-s i, j , ;

nrin1- f /"S.t\j- " hrrhh6r++\.
v! f rru! \ e\J \

^-l^tsFlN\h/\. \ \1r / ,

l

2. To display a rectangie of n rows and m columns filled with the character '''.

ii-ii:i:14r.ws
* . | . * * * *J

________v-___-_

B columns

printf ("Enter the number of rows: ") ;
scanf ("%d",&nrows),'
printf("\n Enter the number of columns :");
scanf ("%d", &mco1s) ;
for (i=1;i<=nrows ;i++;
{ for (i =1;j<=mco1s ; j++)

Printf(""");printf ("\n"); /* Go to t.he next line after each row *,/
]

IS:

2xL:2 3x1:3. ...9x1:9
2x2=4 3x2:6.9x2=18
If the multiples do not fit on a single screen, display each screen after a pause.
(about 24 multiples will fit on a screen)

-
l' Multiplication Tables '/

#include <stdi-o. h>
main()

i rnc table_of , multiplier, n, , count = 1;
printf("\n How many multiples ? : ");
scanf("9d", &n) ;

for (multiplier = 1, mult.iplier<=n; multiplier++, count++)

{
for (table_of= 2 ; t.able_of <= 9 ; table_of++)

-

IEtt

3. To display multiplication tables 2 to 9 (n multiples each). The required display

Principles of Programming and Algorithm 5 > 23 control structures

printf (%2dx%2d=83d\t", table-of,multiplier, table of *

multiplier);
printf("\n");
i-f (count %21==0) / * Screen ful1 */
{ printf (" Press any key to continue'''");

getch O; clrscrO;
]

This program, for each value of multiplier, table_of varies frorn 2 to
giving each row.

4. To display 'n' lines of the structure fuom the center of the first line on
*I

**
|

***1.. I n ilnes
****l

*****V

Ii.'_rl
-trs:i

9 thereby

screen.

IT -11

F?' /' Triangle using the ' character '/
*include<stdio. h>
main()

{
int spaces = 39, n, no-of-stars ,line-no. s;
printf("Enter the number of lines: ");
scanf ("%d \n", an) ;

for (1ine-no = 1; line-no<=n;line-no++)
i

for (s=1-;S<=SPaCes; s++)
nrintf(" "); /* display spaces*/

for (no-of-stars = 1; no-of-stars<=1ine-no;
Printf(*/) '

printf("\n");
spaces--; /* reduce number of spaces by t*/
)

nn nf ct-^rq++)

ifil
==
printfNofe: Instead of using

statement as :

prrntf("3*S", spaces,

loop to disPIaY spaces, we can use a singlea

ures

ffi JUMP sTATEMENTs

5.5.r Break and continue

- we have already seen the use of the break statement in the switch-case statement.It also has orre more use.
Sometimes, it is required to exit a loop as soon as a certain condition is met i.e toforce immediate termination of a roop bypassing the normal loop condition test.
when the break statement is encountered inside a loop, the loop is immediatetyterminated. Subsequent statements in the loop are stippeo and program controrresumes at the next statement following the loop.

Format
break;

Example:The following program checks whether a number is prime or not. To checka prime number, we successively divide it by 2 to number -i. If it is divisible thenumber is not prime. Thus, as soon as we get a 0 remainder, we have to break out ofthe loop.

m
#include<stdio. h>
main ()

{ int number, i ,prime = l;printf (.,enter t.he number: ,,
1 ;scanf (..8d", &number) ;for(i=2;i <number,. i++)

{
if(number 8i == 0)

{ prime = 0;
break;))1f (prime==0)

pr:-ntf (.'\n The number is not prime,,);
el- se

printf ('.\n The number is prime,,);
)
Note: if there are nested loops, the break statement will cause exit only from theinnermost Ioop.

Example
count =1;for (i=1;i<=5;,i++;

{ for (j=1;j<=5;j++)
{

prrnt.f (,.Enter a number: ,,) ;scanf ("8d", &n) ;if (n<0)
break,-

)
count++;

I

t

I

I

lr

Principles of Programming and Algorithm 5 >25 Control Structures

Here, if the user enters a negative number, the block statement will take control to
the statement count+ +, in the outer loop.

Contlnoc rtqtemcnt
The continue statement is somewhat similar to the break statement except that it

does not cause the loop to terminate. It bypasses the remaining statements and it
forces the next iteration of the loop to take place as usual.
Format:

continue;
Example:
do
,l nrint. f l\rE'nl-or : nrrmlror .,r\.
t Y! f rre!

scanf ("%d", &n) ;
if (n<0)

continue,'
sum=sum+n;

) while (n! = 9991 ;

This code accepts integers and calculates the sum of only positive numbers. The
loop terminates after the user enters 999.

In the case of for loop, first the increment part of the ioop is performed, next the
condition is tested and finallv the loop continues.

while (condition)

continue;

i::"u'

)

Examples
1.

while (i)
t:

if (i == l)
break;

nrinf f 1"S.1 " i \

]
n/n A

Principles of Programtning and Algoithm 5 > 26 control structures

2.

whiie(i)

if(i== 3)
continue;

printf ("%d". i) ;

)
o/p 421-0

5.5.2 goto and labels

The goto statement is an unconditional junp statement. The goto statement
(although not used frequently) is used to alter the normal sequence of progrant

execution by unconditionally transferring control to some other part of the program.

Format
goto labe1;

The statement where control hos to be transferred is identified by the)abel.

. A label is a valid C identifier.
r A label is followed by a colon.

. The label can be attached to any statement in the same function as the goto.

r The label does not have to be declared like other identifiers.

Example

loop:
x++,-

if (x<l_00)

goto loop;
One good use for the goto statement is to come out of several layels '.rr :c:tiug.

Example

for (...)
{ for (...)

{ while (...)
t
L ..'

i f I arrsr\
\ v! ! v! /

goto out;

)
)

)

:::'
Note: Control cannot be transferred from outside to within a loop using the goto

statement.

Principles of Programming and Algorithm 5 D 27 Control Structures

5.5.3 Using exit() function
The exit () function causes immediate termination of the entire program.
The exit () function is called with an argument 0 to indicate that termination rs

normal. Other arguments are used to indicate some sort of error.
A common use of exit () occurs when some mandatory condition for program

execution is not satisfied. Invalid password entered, absence of color graphics carcl
for running computer games, negative or invalid input entered, etc.

Example:
main ()

i
int code;
printf ("Enter the security code: ") ;

scanf ("3d", acode) ;
if (!va1id(code))

exit(0);

)

In this example, a user-defined function valid (code) accepts the code and
validates it. If invalid, it returns 0 and 1 if valid. If the code is not valid, the program
execution is terminated.

Another use could be in the switch case statement as shown to stop program
execution if user enters 4.

do
{ ch - getchar();

switch (ch)
{ case '1' : add_record();

break;
case'2' : del-ete_record();

break;
case'3' : view_records();

break;
case'4' : exit(0)

)

) while (ch! ='4') ;

Principles of Programming and Algorithm 5 >28 Control Structures

l. To count the number of words, lines and sentences in the text.
We will define a flag called status, this flag will contain 0 if we are OUT of a
word and it will contain 1 if we are within a word.

lnl
r_!=u

-
/' Counts number oi words, lines and sentences in the text ./

#include<stdio . h>
#define IN 1

#defi-ne OUT 0
main()

{
1nt. wordcount = 0, linecount = 0, sentcount = O, status = OUT;
char ch;
print.f ("\n Enter the text.
while ((sLl=gqtchar()) l=
{

switch (ch)
{

case : case ';' r case
if (status == IN)
{ wordcount++;
status = OUT;)

hroa lr .

case . \n, - lina ^nrrnl-+r.
if (status =- IN)
{ wordcount++;

sLatus = OUT;
]
break;
senE,count++;
if(status == IN)
{ r^rnrdanrrhl- rr.

status = OUT;
)
break;

default:st,atus = IN;
) /" end of switch */
) /* end of while */

if (status -= IN)
wordcount ++;

printf("\n Wumber of
printf("\n Number of
printf (" \n Nunlcer of

) /* end of main */

- ctrl- z to t.erminate \n") ;
EOF)

FA CA

Lines = td"
senEences =
words = td"

++'linoanrrnl- l.

Bd", sentcount) ;
, wordcount);

Ptinciples of Programming and Algorithm 5 > 29 Control Structures

2. To display the first 'n' prime numbers.

LJ;E-
1t First n prime numbers, use of nested loops ./

#include<stdio . h>
#define PRIME 1

#define NOTPRIME 0

main ()

{ int. n, divisor, flag = PRIME, number,count =1;
princf ("\n How many prime numbers ? : ,,);
scanf ("%d", &n) ;

printf("\n The firsL %d prime numbers are : \n,,);
printf ("2 \t") ;

number = 3;
while (count<=n)
{ /* check if number is prime */

for (divisor =2; divisor<=n-1;divisor++)
{ i-f (n% drvisor == 0)

{ flag = NOTPRIME;
break;))

if (flag == PRIME) /" If number is prime */
{ count ++ ; printf("%d \t", number) };

flag = PRIME; /* reset flag */
number++; /* check if next number is prime */

) / * end of whif e *,/

]/* end of main */
m
==

Output
How many prj-me numbers? : 5
The first 5 nrime nrrmhers are : 2 3 5 1 II

F..x,s.r.s.i.s.e.s..
A. Predict the output of the following.

l.
main ()

{ int x = 1;
switch (x)
{ case 0 :x= L;

case 1 :x= 3;
case 2 :x+= 4;
case3:x=2;
default :x+= 2;

)
nrinl_ f t*.1 ,' v\ -

)

Principles of Programming and Algorithm 5 > 30 Control Structures

narn ()

{ int x=5, y=50, 7= (;1+Y) *10;
whiie (x<=5)

x-Y / x;
]
H^1n/ m^n'r r i nes rui I 1 thr. I oon exocuLeJrrvvv 1,,qIJ

iii.
int 1 = 4:
switch (I)

t defaulc : printf ("A") ;

case 1 : printf("8");
case 4 : printf("C");

while (i)
I i -- '

continue;
printf("\n HelIo");

)

while (i)
{ i=100;

printf("%d.. ",i);
i--;

)

vi.
main ()

{ ini- i i L.

for (j=1;j<=4;j++)
.i f/-;*A--1a\J! \J =--Lal

d^l-^ fhoro.
Yvev L4fe!v,

^t ^^

printf("here\n");
for (i=1 , i<=5 i++)

i k = ixi;
l-horo . nrinf f /'.f'naro\n")r vr +11u!

)

)

ll.

)

iv.

Principles ol Programming and Algorithm 5 >31 Control Structures

vii.
ma j-n o
i int c=9'7 ;

swrtch (c) ;

{ case 'a' :

if (c>3)

case 'b':
c=1O.
prrntf (',%d,,,c);

))

Programming exercises

1. Write a program to disptay all Armstrong numbers below 1000.
(An Armstrong is a number whose sum of cubes of digits is the nunber itself.
e.g. 153 : 13 +53 +33)

2. Display all perfect numbers below 500.
(A perfect number is a number, such that the sum of its factors is equal to the
numberitself. 6 = 1 + 2 + 3)

3. Display the first 'n' terms of the Fibonacci series. (each term = sum of previous
two [erms].

4. Accept an integer and display its prime factors.
5. Find the sum of first 'n' terms of the followinq series

r. 1+3+5+...
ii. x + x3 + x5+....

123
1! 2l 3!"'

.x2x3rv. x-
Z) t. + 3 !-......

6. Accept two integers a and b and display a-b , a/b and a%b without using ., /
and % operators.

7. Calculate the GCD and LCM of two integers.
8. Accept characters from the keyboard till the user enters EOF. Count the

number of uppercase, Iowercase alphabets and vowels in the text.
9. Write a C program to read lines of text and count the number of characters,

words and lines in the text.
10. Write a C program to read an integer, reverse it and display both.
11. Write a program to display digits of an integer separated by tabs

Example: 1009+10 0I
2000 -+2 0 0 0

1'2. Accept data from the keyboard and check if it is vatid or invalid.
13. Accept lines of text from the user and find the length of the longest line.

Principles of Programming and Algorithm 5 > 32 Control Structures

C. Review Questions

1. What are the different forms of the if statement?

2. Explain the switch-case statement with examples.

3. Differentiate between if-else and switch-case.

4. Explain else-if ladder with an example.

5. Explain the syntax of a while loop.

6. How does a do-while loop differ from a while loop?

7. Explain different ways to terminate loop execution.

8. Explain the for loop with examples.

9. Distinguish between break and continue.

10. Write a note on goto and labels.

11. Illustrate the use of the break statement in the switch -case statement.

12. Discuss the working of if-else and switch statement.

ffi

INTRODUCTION TO
PROBLEM SOLVIN

INTRODUCTION

Problem solving is.a part of thinking. It is a part of a larger problem process thatincludes problem finding and problem itraplng. G"org" polyl oulined the essence ofproblem solving:

1. Understand the problem(communication and analysis)
2. Plan a solution (modelling and design;
3. Carry out the plan (code generation;
4' Examine the result for accuracy(testing and quality assurance)

For certain problem the task of defining the problems are much more timeconsuming and costly than the task of programming irru-. The modularity on most ofthe problems can be represented by a hlerarchical structure.

Level 1

Level 2

Level 3

Level 4

6 >1

!

I

I

Principles of Programming and Algorithm 6>2 lntroduction to Problem Solving

The structure
of L, which gives
to a number of
respectively.

Level 2 gives
on.

has a single main nodule, with which we associate a level nutnber
the brief general description of the system. The main module refers
subordinate modules r,v'hich have been numbered as le"'el 2' 3, 4

more detail description of the system, than the main module and so

It is possible that modules at upper level refer to the lower one. The concept of

hierarchically structuring a problem in this fashion is a funtlarnental one in the
problem solving. It is this fonn of the organization or structuring which permj,ts us to
unclerstand a system at different Ievels and allow Lls to make changes at one level.
Without having to completely understand more detailed descriptions at higher levels.
The important thing that can be done with this is desirabiiity of being able to
understand a module at a certain level independently and all remaining nodules at
that same level.

The task of writing a computer progran is made simplel if thc problem can be

analyzed in terms of sub-probLems. In organizing a solution to a problem which is to
be solved with the aid of computer, we are confronted with at least four interrelated
sub-problems.

The sub-problems are:

1. To understand throughly the relationships between the data elements that are
relevant to the solution of the problem.

2. To decide on the operations that must be performed on the logically related
data elements.

3. To divide the methods of representing the data elements in the memory of the
cornputer such that a) the logical relationships that do exist between data items
can best be retained and/or b) the operations on the data elements can be

accomplished easily and efficiently.

To decide on what problem solving language can best aid in the solution of the
problem by allowing the user to express in a natural manner the opetations hc:

or she wishes to perfolm on the data.

PROBLEM SOLVING TECHNIQUES

There are many approaches to problern solving, depending on the nature of the
problem and the people involved in the problem. The more traditional, relational
approach is typically used and involves exantple, clarifying the description of the
problem, analyzing causes, identifying alternatives ,accessing each alternative,
choosing one, implementing it, and evaluating whether the problern was solved or
not.

Another approach is appreciative inquiry. That approach asserts that "problems"

are often the result of our own perspectives on a phenomena, exctmple if we look at it

4.

Principles of Programming, and Alqorithm 6 > 3 lntroduction to Problem Solvinq

as a "problem," then it wiil become one and we'll probably get very stuck on the
"problem." Appreci.rtive inql'iry includcs identification of our best times about the
situation in the past, wishing and thinking about what worked best then, visloninq
what we rvant in the future, and building from our strengths to work toward our
vision.

Following orc sonle of the problem solving techniques

A. Trial And Error
In trial and error, one selects a possible ansvr'er, applies it to the problem and, if it

is not successful, selects (or generates) another possibility that is subsequently triecl.
The process ends when a possibility yields a solution.

This approach is more successful with simple problems and in games, and is often
resorled to when no apparent rule applies. This does not mean that the approach
need be careless, for an individual can be methodical in manipulating the var-iables rn
an attempt to sort through possibilities that may result in success. Nevertheless, thts
method is often used by people who have little knowledge in the problem area.

fidvo ntqgcs

1. Solution-oriented: Trial and error makes no atternpt to discover why a soltttion
works, mereiy that it is a solution.

2. Problem-specific: Trial and error makes no attempt to generalise a solution to
other problems.

3. Non-optimal: Trial and error is an attempt to find o solution, not crl.l solutions,
and not the best solution.

4. Needs little knowledge: Trials and error can proceed where there is little or no
knowledge of the subject.

6pplicqtions

1. Biological evolution is also a form of trial and error. Random mutations and
sexual genetic variations can be vierred as trials and poor reproductive fitncss
as the error. Thus after a long time 'knowledge' of well-adapted qenomes

accumtilates simply by vir-tue of tirem being ob.le to reproduce"

2. Bogosort can be vielved as a trial and ertcr approach to sortirrg a list.

3. In mathematics, the method of trial and error can be used to solve formtrlae -it
is a slower, less precise metirod than algebra, but is easier to understand.

__ Principles of Programming and Algorithm 6 Y 4 lntroduction to Problem Solving

B. Brain stormtng
Brainstorming is a group creativity technique designed to generate a large ideas

for the solution to a problem. The method was first popularized in the late 1930s by
Alex Faickney Osborn. Osborn proposed that groups could double their creative
output by using the method of brainstorming.

Atthough brainstorming has become a popular group technique, researchers have
generally failed to find evidence of its effectiveness for enhancing either quantity or
quality of ideas generated. Because of such problems as distraction, social loafing,
evaluation apprehension, and production blocking, brainstorming groups are httlc
rnore effective than other types of groups, and they are actually less effective than
individuals working independently. For this reason, there have been numerous
attempts to improve brainstorming or replace it with more effective variations of the
basic technique. Although traditional brainstorming may not increase the productivity
of groups, it may still provide benefits, such as enhancing the enjoyment of group
work and improving morale. It may also serve as a useful exercise for team building.

There are four basic rules in brainstorming. These are intended to reduce the
social inhibitions that occur in groups and therefore stimulate the generation of new
ideas. The expected result is a dynamic synergy that will dramatically increase the
creativity of the group

1. Focus on quantity
This rule is a means of enhancing divergent production, aiming to facilitate
problem solving through the maxim, quantity breeds quality. The assumption is
that the greater the number of ideas generated, the greater the chance of
producing a radical and effective solution.

2. No criticism
It rs often emphasized that in group brainstorming, criticism should be put 'on

hold'. Instead of immediately stating what might be wrong with an idea, the
parlicipants focus on extending or adding to it, reserving criticism for a later
'crttical stage' of the process. By suspending judgment, one creates a supportive
atmosphere where participants feel free to generate unusual ideas.

3. Unusual ideas are welcome
To get a good and long list of ideas, unusual ideas are welcomed. They may
open new ways of thinking and provide better solutions than regular ideas.
They can be generated by looking from another perspective or setting aside
assumptions.

4. Combine and improve ideas

Good ideas can be combined to form a single very good idea, as suggested by
the slogan "l*1:3". This approach is assumed to lead to better and more
complete ideas than merely generating new ideas alone. It is believed to
stimulate the buildinq of ideas by a process of association.

3.

Principtes of Programming and Algorithm 6 D 5 lntroduction to Problem Solving

C. Diuide And Conquer
Divide and Conquer (D&C) is an important technique in problem solving. It

recursrvely breaks down a problem into two or more sub-problems of the same

(or related) type, until these become simple enough to be solved directly. The

soiutions to the sub-problems are then combined to give a solution to the original

problem.

Advantages

1 Solving difficult problems

Divide and conquer is a powerful tool for solving conceptually difficult
problems, such as the classic Tower of Hanoi puzzle. Indeed, for many such

problems the paradigm offers the only simple solution.

Dividing the problem into sub-problems so that the sub-problems can be

combined again is often the major difficulty in designing a new aigorithm.

2. Parallelism
Divide and conquer technique is naturally adapted for execution in multi-
processor rnachines, especially shared-memory systems where the

communication of data between processors does not need to be planned in
advance, because distinct sub-problems can be executed on different
processors.

Memory access: Divide-and-conquer technique naturally tend to make

efficient use of memory caches. The reason is that once a sub-problem is srnali
enough, it and all its sub-problems can, in principle, be solved within the

cache, without accessing the slower main memory. An algorithm designed to
exploit the cache in this way is called cache oblivious, because it does not

contain the cache size(s) as an explicit parameter.

STEPS IN PROBLEM SOLVING

Problem Solving includes three major activities:

Define a problem

Analyze problem

Explore solution
Deiine a problem

Before beginning work on a house, a builder reviews the blueprints, checks that
all permits have been obtained. And surveys the houses foundation. A br.rilder

prepares differently for butlding a skyscraper. Or building a dog house. No
matter what the project, the preparation tailored to its needs and done

consciously before construction begins.

The first prerequisite you need to fulfill before designing the program modei is

a clear statement of the problem that the program is suppose to solve. A
problem definition defines what the problem is without any reference to the

1.

2.

3.

1.

Principles of Programming and Algorithm 6 > 6 lntroduction to Problem Solving

possible solutions. Its simple statement may be one to two pages, and it shouid
sor.rr-rd like a problem. For example the statement "We can't keep up with orders
Gigatron", sounds like a problem and is a good problem definition. Whereas
the statement, "we need to optirnize our automated data-entry system to keep
up with orders for the Gigatron" is a poor problem definition because the term
"We need to ..." itself is , in a way explaining what needs to be done. it doesn't
sound Like a problern; it sounds like a solution. Problem definition comes before
requirement analysis, which is more detailed analysis of the problern.

The problem detinition should be in user language, and the problem shotrld be
described from the user''s point of view. It usually should not be statcd jn
technical computer terms.

The penalty for failing to define the problem is that you can waste a lot of time
solving the long problem is a double - barreled penalty because you also don't
solve the right problem.

Solving a problem without a clear understanding of its components may turn
out to be a lutile exercise as the solution may not meet the requirement of the
user. So a problem statement has to be prepared which explains everyr minute
detail of the problem beyond doubt. This can be best achieved by writing down
the problen in clcar statements. Better problem definition results in faster,
easier and accurate solutions.

2. Analyze Problem

It describe in detail r,r'hat a problem is supposed to do, and they are the first
step toward a solution. The requirements activity is also known as "functional
specification". And explicit set of requirements, is imporlant for several
reasons. Explicit requirements help to insure that the user rather than the
progranmer drives the prograrns functionality. If the requirements are explicit,
the user can review them and agree to them. Explicit requirements keep you
from guessing what the user wants. Specifing requirements adequately is a key
to the programs success.

Essentially, we must look for three main components which are

i. What is given as input
ii. What is expected as output, and

iii. How to arrive at the solutiort

You are already familiar with the above three iterns i.e. input (data) , process.
and output (information) . Hence while determining program requirenents we
have discern from the problem statenrent what exactly constitutes input, what rs

expected as output and how to processing is to be done. It will not be out of
placc to mention here that, a given problem or business solution may be solvecl
in a pafticular way manually , and we n.lay or may not choose to adopt the same
processing logic while developing a solution to be computerized.

Lets take an example and understand the above concept of input, process and
output.

Principtes of Programming and Algorithm 6 > 7 lntroduction to Problem Solving

A Program is required to retrive motor vehicles rcgistration record from a file
upon receipt of request from an operatol at a tcrminat, The operdtor will sttpply
a vehicle registration nuruber and the progratn rvill display the details of its
vehicle and its owner. An error nessage will be displayed if the program is

unable to locate the vehicle's record.

I nput : Vehicle registration ntttnber

Process: Using the registration nrrmber search for rt, and it found, retrrve the
details of the vehicle and iis owner's name from the disk'

Output: If retrival was successfni, then allow the details of the vehicle to tirer

display on the screen but if unsuccessful, indjcate the absence <-rf the vehit:ic:

registration on the disk and display a suitable error rnessage.

3. Explore solution
Once the problem is cleariy defined an algorithm (another term for processing
logtc or model) can be developed. This is the most creative ptrrt of
programminq. At this stage, the algorithm may be constructed in the broad
terms to help problem. To be useful as a basis for writing a program, thel

algorithm must:

o Arrive at a correct solution within a finite time.

. Be clear, precise and unambiguous.

o Be in a format which lends itself to an elegant implementation in a

proq rantm i ng lartgtta ge.

The important tools in developing solutjon and in the preparation of a algorithrn
are flowcharls and pseusocodes among others. Flowcharts provide a visual and
graphical representation of ttre solution lvhrle psedr.rocodes mean writing the program
loqic rn a simple English - like language. Logic deicec.l r"rsing these tools r:an be

rr riLten using an programming language. In other words these are the generic toclls.

ALGORITHMS AND FLOWCHARTS

A computer is a machine that manipulates data by using a finite nutnber of
unambiguous instructions obediently, uncritically, and without showinq any
emotions. Take an instance of major who went to a Post Office with thc order " Buy

five 50 paise stamps". The serwantwentwith the money to the Post Office and did rtot

turn up for a long time.

The major got worried and went in search of him to the Post Olfice and found him
standing there with the stamps in his hands. Wnen major angrily asked hitl that whelt

made him standing there, he replied that he was ordered to buy five 50 paise stamps

but not ordered to return with them. Conrputer solving is an intricate process trttruillc;
much thought, careful planning, loqical precision, persislance and attelltion.

Principles of Programming and Algorithm 6) 8 lntroduction to Problem solving

Dcf inition
Algorithm

In order to carry out a task using computer, a sequence of explicit and
unambiguous instructions is known as an algorithm.

An algor:ithm consist of a set of explicit and unambiguous finite basic steps, when
followed for a given set of initial conditions may produce the corresponding output
and terminates in a finite time. An algorithm expressed in a programming language
is calleci a program.

Flowchart

A flowchart is a pictorial representation of a program. A flowchart is designed to
visually represent the flow of execution through a program.

A flowcharl captltres sequence, selection, and iteration, all the three basic
constructs of the program. Flow charts are made up of boxes, each with their own
function. The shape of box shows what it is doing.

Arr-ows betlveen these boxes shows the plogram flow.

A typical flowchert may have the Iollowing kinds of symbols:

1. Start and end symbols, represented as lozenges, ovals or rounded rectangles,
usually containing the word "Start" or "End", or another phrase signaling the
start or end of a flowchart.

Arrows, showing what's called
symbol and ending at another
svmbol the arrow points to.

"flow of control". Al arrow coming from one
symbol represents that control passes to the

I

I

a{z

Processing steps, represented as rectangles. Examples: "Add 1 to X"; "replace
identified par1"; "save changes" or similar.

4. InpuVOutput, represented as a parallelogram.

5. Conditional (or decision), represented as a diamond (rhombus).

Principles of Programming and Algorithm 6>9 Introduction to Problem Solvinq

These typicaliy contain a Yes/No question or True/False test. This symbol is
unique in that it has two anows coming out of it, usually from the bottom point
and right point, one corresponding to Yes or True, and one corresponding to No
or False.

The arrows should always be labeled. More than two arrows can be used, but
this is normally a clear indicator that a complex decrsion is being taken, ir.r

which case it may need to be broken-down further, or replaced with the "pre-
defined process" symbol.

CHARACTERISTICS OF AN ALGORITHM
Following are the basic charqclerjsllcs of an algoriiltm:

1. /NPUI There are no restrictions over the input requirements of the algorithm.
Number of inputs of an algorithm may be zero or nore than zero.

2. OUTPUT: There must be at least one output produced by the algorithm as it
accomplishes the given task.

3. EFFECTMNESS; Every instruction used in algorithm should be basic enouqh
or it can be broken into basic instructions so that these instructions can De
carried out manually using pen and paper.

4. DEFIN/TENESS; Every instruction of the algoritlim should be unambiguous.

5. F/N/TENESS: The algorithm should get terminated in a finite arnount of time.

Qualities of a good algorithm

1. They are simple but powerful and general solutions.

2. They can be easily understood by others.

3. They can be easily, modified, if necessary.

4. They are correct for clearly defined solutions,

5. They are economical in the use of computer time, storage, and peripherals.

6. They are well documented.

7. They are maching independent.

B. They are able to be used as a subprogram for other problems.

Principles of Programminq and Alqorithm 6 > 10 lntroduction to Problem Solvinq

CONDITIONALS IN PSEUDOCODE

Pseudocode (derived from pser"rdo and code) is a compact and inlormal high-ievel
description of a computer programming algorithm that uses the structural
conventions of some programming language, but typicaily omits details that are not
essential for the understanding of the algorithrn, such as subroLltines, varjable
declarations and system-specjfic codc. The purpose of using pseudocode is that it.

may be easier for humans to read than conveulional programming languages, and
that it may be a compact and environment-jndependent description of the key
principles of an algorithm.

Flowchafis can be thor,qht of as a graphical allr:mative to pseudococie.
Pseirdt-rcode resembles, but sltonld not be confusecl wrth, skeieton prollrams rncluding
dnmury code, which can be comprled without crrors.

As the nane suggests, pseudocode generally does not acttrally obey the syntax
lules of any particular language; there is no systematic standard form, although any
particular writer r,r'ill generally borrow the appearance of a particular language.
Popular sources include Pascal, BASiC, C, Java, Lisp, and ALGOL. Details not
relevant to thc algorithm (such as lrlelnoly managernent code) are usually omitted.
Blocks of code, for example code contained within a loop, may be described in a one-
line natural language sentence.

Just like structured programs pscudocode is built on three basic constructs:
sequence, selection and looping. And just like Visual Basic program, a program
written in pseudocode is divided into functions or procedures. Each function has
signature (name, return type and argunrents) and a body (a sequence of pseudocode
statements).

An alternative method of representing program logic is pseudocode. Instead of
using syrnbols to represent the program logic steps, a pseudocode uses statenrents
which are a bridge between actual programming and ordinary English. In a
pseudocode each step is written using a simple English phrase which is also called a
construct.

LOOPS IN PSEUDOCODE

Some of the conventions which are to be used while writing pseudocodes are as
follows :

1. All statements in a loop should be intended.

2. All alphanumeric values should be enclosecl in a single or double quotes.

3. The beginning and end of the pseudococle is rnarked with keynords like'st.rrt'
and'end' respectively.

4, All statenents must include certain key words which denote an operation.

Principles of Programming and Atgorithm 6 > 11 Introduction to Proller, fsA'ng_-

Thc Input Stqtcmcnt

The follovring verbs can be used to accept or input data from the keyboard or flom
an exciting from like a file.

Accept or Read

For Example

Accept Name
Read Name

The Output Statement

The following verbs can be used to output data

Write or Display

For Example

Write lrlame
Display Name

For Example. A function to return absolute value of an integer might look like this:

Absolut.e-Value(x : Integer) -> Integer
Begr.n

If (x<0)
Return (-x)

-E,1SE
Return (x)

ltnd -Ir
End

The function name is Absolute_Value, it receives and integer value(x) an returlls
an integer value as its result. The function body starls with the word Begin and ends

with the End word. Within a body we have a sequence of statements. Each statenent
within the sequence maybe either a simple statement, a selection statement, or a

iteration statement.

Simplc stqtcmcnts

A simple statement is one of the following:

. Variable: Type(declare a new variable of a given type)

. Variable: = Expression(Assign the value of an expression to a variable)

r Function(A-guments) (Catl function, passing in arguments)

r Return(Expression) (return expression as the value of this function)

r Break (break out of the current loop or switch statement)

r These are not only the possibilities for simple statements, but they are the most

colnmon.

Principles of Programming and Algorithm 6 Y 12 lntroduction to Problem Solving

Sclcction stqtemcnts

A selection statement is either an if statement or a case statement

If conditionl Then
Statementl Body 1

EIseif condition2 Then
Sr aLemenc Body 2
.... (You can have many else if clause)

E1 se
Statement Body N

Endi f
As shown an if statement tests a condition, or boolean expression(i.e. an

expression that evaluates to either True or False) If the condition is true, then the
corresponding statement body is executed. But if the condition is false, then the next
expression is checked similarly.

This continues in sequence until an expression is found to be true. If all the
expressions evaluate to false, then the statement body associated with the else clause
is executed. You can have as many elseif clauses as you had like (including none).

The else clause is also optional.

Select Case expression

Case valuel-:
St.atement Body 1

Case Value2 :

St.atement Body 2

Default:
Statement Body N

Endselect

A select case statement (also called a case statement or sometimes a switch
statement) evaluates an expression and compares it against several values. If the
result of the expression is equal to one of the values in the case clauses, then the
corresponding statement body is executed.

If the result of the expression does not match any case clause, then the default
statement body is executed. After a statement body is executed, the computer
executes the next instruction irnmediately following the Endselect .

Itcrotion Stotcmcnts Or Loops

A repetition statement (also called an iteratron statement or a loop) is very useful.
It causes a block.of code to be executed repeatedly. There can be many kinds of
loops.

While Do loop

While condition do
Statement /bodv

Enown.r _Le

lntraduction to Problem Solvino

As long as the condition is true, the statement body is executed. Thus, somethi'g
in the statement body shoulcl modify one of the variables in the condition expression,
or else you will be stuck in an infinite loop.

Do Until loop

Do
Statement Body

Until condi_tion

A do until loop is very similar to the while loop. The main difference is that the
while loop tests the condition before executing the statement body, but the do whrle
loop tests the condition after executing the statement body. ttrui, tfre body of a do
until loop will always be executed at least once. For instance, suppose the condition
is false.

For a while statement, since we test before, we discover that the expression is false
and do not execute the body. However, for a do until loop we have aiready executecl
the body before we test the condition expression for the firit time.

The other difference is that a while loop repeats as long as a condition is true, bur
a do until loop repeats as long as a condition is false.

TIME COMPLEXITY

An algorithm is said to be correct if, for every input instance, it halts wilh the
correct output. We say that a correct algorithm solves the grven cornputatronal
problem. An incorrect algorithm might not halt at all some urput instance or it miqht
not halt at all on some input instances.

Analyzing an algorithm has come to mean predicting resources that the algorithm
requires. Occasionally, resources such as memory, communication band-idth, o1.
Iogic gates are of primary concern, but most often it in computational time that we
want to neasure.

The performance analysis and measurement of
crrteria:

an algorithm is based on two

' Space Cornp!*xity: It is the amount of memory is needed to run to completion.

o Time complexity: it is the amount of time needed to run to completion.

Time Comptexltg
The time'i{pi t*ken by a;--gram p is the sum of the compile tjme and run time.

The compile tin.te does rrot depend on the instance characteristics so we shall concern
our'r-;.1, :,s wiili ji-r:. ri!e iirne of a prc,gtam r.t,hich is denoted by tp.

Tp(nl =CaADD(n) +CsSUB(n) +CmMUL(n) +CdDIV(n) +...
In computational complexity theory, big O notation is often used to describe hgw

the size of the input data affects an algorithm's usage of computational resources

Principtes of Programming and Algorithm 6 D 14 Introduction to Problem Solving

(usually running time or memory). It is also called Big Oh notation, Landau notation,
Bachmann-Landau notation, and asymptotic notation

F(n) : O(S(n)) if there exists positive constants c and no such f(n) < cg(n)

For all n; where f and g are non negative functions.

We write O(1) to mean a cornputing time that is a constant

o O(n) is called linear

r O(n2) is called qudratic

. O(nn) is exponential

Big OH notation
Big OH notation is the characterization scheme that allows to measure properties

of an algorithm complexity performance and/or memory requirements in a general

fashlon. The algorithm complexity can be determined ignoring the implementation
dependent factors. This is done by eliminating constant factors in the analysis of the

algorithm.

Basically, these are the constant factors that differ from computer to computer.
Clearly, the complexity function f(n) of an algorithm increases as n increases. It is the

rate of increase of f(n) that we want to examine.

Suppose f(n) and g(n) are functions defined on positive integer numbers n, then
function f(n) = o(g(n)) , read as "f of n is big oh of g of n" or as "f(n) is of the order of
g(n)", if there exist positive constants c and n0, such that f(n) = c ' g(n) for all values

ofn: no.

That is, for all sufficiently large g(n). Thus g is upper bound, except for a constant
factor c on the value of f for sufficientiy large g(n). Thus g is an upper bound, except
for a constant factor c on the value of f for all suitably large n i.e., n>:no. While
providing an upperbound function g for f , we wilI use only simple functional forms'

These typically contains a simple term in n with a multiplicative constant of one.

Cctcgories.of 6lgorithms
Based on Big oh notation , the algorithms can be categorized as follows :

r Constant time (O(1)) algorithms

. Logarithmic time (O(log n)) algorithms

r Linear time (O(n)) algonthms

. Polynomial time (O(nk), for k>1) algorithms

. Exponential time (O(kn), for k> 1) algorithms

Many algorithms are O(n log n).

Principles of Programming and Algorithm 6 > 15 lntroduction to problem Solving

Limitotions of Big Oh notqtion
Big Oh hc;.s two basic limits.fions :

o It contains no consideration of programming effort

o It masks poientiaily important constants

' As an example of later limitation, imagine two algorithms, one using 500000n2
time, and the other n3 time. The first algorithm is O(n2), which implies that it will
take less than the other which is O(n3). However the second algorithm will be faster
for n<500000, and this would be faster for many applications.

Basic time snslysis of an algorithm
Lets take an example of analysis of time required for the execution of an algorithm

Consider the following algorithm to sum the values in vector V that contains N
values:

Flgorithm S0M_VFL0ES

Given a vector V containing N elements, this algorithm computes the arithmatrc
sum (SUM) of these elements. I is a integer variable.
1. [Sum Lhe values in Vector V]

SUM <- O

Repeat for I = 1,2,...N
SUM <- SUM +VIII

2. IFinisired]
Exit

Rather than calculating the exact time, we want an estimate of it. Usually this is
most easily done by isolating a particular operation, sometimes called an active
operation, that is central to the algorithm and that is executed essentially as often as
any other. In the above example, a good operation to isolate is the addition thar
occurs when another vector value is added to the partial some. The other operations
in the algorithm, the assignments, the manuluation of the index I, and the accessing
of a value in the vector, occur no more often then the addition of vector values. These
other operotions we collectively called book keeping operations and are not generally
counted.

It is very important that none of the bookkeeping operations are executed
significantly more often than the active operations. After the active operations are
isolated , the no of tirnes urat it is executed is counted.

The number of additions of values in the above example is N. As long as the active
opelaiion occurs et as often as others , then the execution time will increase in
pr{}Jcirtron to the number of times the active operation is executed. The above
algorithm has execution time proportional to N or expressed another the time
required is linearly proportional to the size of the input.

Example : Matrix multiplication of two N ' N

e t go rittrm Mfi TR!X-i'|0 tTlPLlCfi TIO 1{

Given two dimensional square matrices
columns, this algorithm computes the matrix
C. I,J, K are integer variables.

matrices A and B to form N' N mairix

A and B, each containing N rows and
product and places the result in matrix

i lMrrlfinlru matrices A and B and store the result in matrix C]!. L:rur

Repeat for I = l-,2,...N
Repeat for J =1,2,...N

SU}T< - O

Repeat for K = 1,2,...N
SUM <- SUM + AlI, Kl * BlK,Jl
c Ir, J] <- suM

2. IFi-nished]
_EXat

The actual size of the input for this algorithm is 2N2, but it is convinient to use N
as our neasure of the size of the input in order to simplify the calculations. For the
active operations, we can select either the multiplication of A[I, Kl AND B[K, J], or
the addition of above product to surn. This foilows since both are central operations
and essentially occurs as any other. It is to see that either of these operations is
executed N3 times, so that the time for the algorithm is proportional to N3.

Note that there are actually more assignments than multiplications or additions.
There are n assignments to I, N2 assignments to J and C , N3 assignments to K, and
N2+ N3 to SUM. This yields a total of N * 3N2 + 2N3 assignments. Certainly
assignments could have been selected as our active operation although it is

questionable whether it is as central to the problem as either multiplication or
addition.

If it were used as a active operation , r,r,e would conclude that the time was

proportional to N + 3N2 +2N3. Fortunately, we are normally only interested in the
order of magnitude of the time required. The order only considers he term that grows

fastest,.2N3, ignore the constant 2, associated with it. Thus we obtain the order of
magnitude for the time required is N3, independent of which operation is chosen as

active, but that just happens in the problem. In other cases, may be assignments
would have to be active.

Thus it is eosy to verify the IolJowing:

o 100n3 is O(n3)

r 6n2 * 2n * 4 is O(n2)

o 1 * 2 + 3 +... + n = n' (n+1)12 =n2 + O(n) = O(n2)

. 1024 is O(1)

Principles of Programming and Algorithm 6 > 17 lntroduction to probtem solving

. n+lognisO(n)

. 3n is O(n2) and also O(n)

SIMPLE EXAMPLES: ALGORITHMS AND
FLOWCHARTS (REAL LrFE EXAMPLES)

Example

Accept two numbers, add them and display the result.

The steps for the above problem statement are

START

ACCEPT NI

ACCEPT N-

SUM=N,+N,
DISPLAY SUM

END

The above is the pseudocode for our problem. It may be noted here that whether
we input N, first or N, first is immaterial here.

However the statement suM : Nr * N, cannot come before the two numbers
have been input.

Flowchart

ACCEPT Nr, N, denotes that two numbers are accepted from the user and stored
in variable Nr and N2. SUM = N1*N2 denotes that a process is taking place, which is
adding the numbers Nr and N, and the resultant output is stored in the variable
SUM. DISPL.AY SUM denotes that the resultant SUM is displayed on the screen.

Accept N,, N,

Sum = Nr+ Nz

Principtes of Programming and Algorithm 6 Y 18 lntroduction to Problem Solving

Example: Mohan's monthly salary consists of basic salary, traveling allowances
and 15% commission on sales nade. At the end of the month we need to calculate hrs

salary which is done in the following pseudocode.

START

ACCEPT BAS-SAL, TVL-ALL, SALE_AMT

COMM = SALE-AMT *0.15

NET-SAL = BAS-SAL + TVL-ALL + COMM

DISPLAY NET-SAL

END

It may be noted here that we are accepting 3 variables. BAS-SAL, TVr
-ALL,

SALE_AMT with one accept statement. This is valid. Alternatively, three ACCEPT
statements could have been written one for each of the three variables. Here
BAS_SAL, TVI._ALL, NET_SAL are variables which hold the value for basic salary,
travelling allowance, sales amount and net salary, respectively.

Example. Maximun of three numbers :

START

ACCEPT NUM1, NUM2, NUM3

IF NUM1 IS > NUM2 THEN

IF NUM1 IS > NUM3 THEN

DISPLAY "NUM1 IS MAXIMUM"

ELSE

Accept Bas_Sal,
Tvl_All, Sale_Amt

Comm = o.15. Sale_Amt

Net-Sal =Bas-Sal +Tvl-All +Comm

Principles of Programming and Algorithm 6>19 lntroduction to Problem Solvino

DISPLAY "NUM3 IS MAXIMUM"

ELSEIF NUM2 IS > NUM3

DISPLAY "NUM2 IS MAXIMUM"

ELSE
DISPLAY "NUM3 IS MA.XIMUM"

ENDIF
END

We are accepting three variables here NUM1,NUM2, NUM3. And the
is working to find out the maximum of these three numbers. In the
flowchart it has been shown that how to imnlement selection staments like
flowchart.

At first we are comparing first two numbers NUM1 and NUM2. If
greater than NUM2 we need to compare.

Flowchart:

algorithm
following
if..else in

NUM1 is

Accept Num1, Num2, Num3

Principles of Programming and Algorithm 6 Y 20 Introduction to Problem Solving

F..x.s..r. cise

1. What is problem solving?

2. Which are different techniques used for problem solving? Explain in detail

3. Discuss the advantages of Divide and Conquer method.

4. Which are the different steps in problem solving?

5. Give the definition of algorithm and flowchart.

6. Which are the characteristics of the algorithm.

7 What is a time complexity? (Explain along with Big Oh Notation)

8. What is Pseudocode? Explain with example

9. Write an algorithm, flowchart and time complexity for the following:

i. Factorial of a given number

ri. Addition of two metrics

iii. Sorting the given data

iv. Check whether the given number is prime or not.

ffi

SIMPLE ARITHMETIC
PROBLEMS

PROGRAM FOR ADDITION OF TWO
INTEGERS

#include<stdio.h>
#include<conio. h>
voi-d main o
I

/*Declaration of variable *,/
int Numberl, Number2, Sum;
clrscr () ;
prl-ntf ("\n Enter First Number : ,') ; /* fnput First Number. */

scanf ("%d", &Numberl) ;
pri-ntf (" \n Enter Second Number : ',) ; /* Input. Second Number */

scanf (" 8d " , &Number2) ;
Sum=Numberl + Number2; /* Addition of Two Number */printf("\n Addition is : td",Sum); /* Output of Sum */
getch () ;

i

Output

Enter first number : 23

Enter second number : !7
Addition: 50

7 >1

Principles of Programming and Algorithm 7 > 2 simple Arithmetic problems

PROGRAM FOR MULTIPLICATION OF
TWO INTEGERS

m
-#include<stdio. h>
#incl-ude<conio. h>
void main ()

i
/*Declaration of variable */

int Numberl, Number2, Sum;
/ / chscr (\ ;
print.f ("\n Enter First Number :,,) ; /* Input Fi_rst Number */
scanf ("%d", &Numberl) ;
printf("\n Enter Second Number :"); /* fnput Second Number *,/
scanf ("8d", &Number2) ;
Sum=Numberl * Number2; l" Multiplication of Two Number */
printf("\n Multiplication is : %d",Sum); /* Output of Sum */
get.ch () ;

Output

Enter first number: 3
EnLer second number : L2
Multiplication is: 36

PROGRAM FOR DIVISION OF TWO
INTEGERS

#incl-ude<stdio . h>
#include<conio. h>
void main ()

{
/*Declaration of variable */

int Numberl, Number2,Div ;
clrscr () ;
printf("\n Enter First Number :"); /* Input First Number */
scanf ("8d" , &Numberl) ;
printf("\n Enter Second Number :"); /* Input Second Number */
scanf ("8d", aNumber2) ;
Div=Numberl ,/ Number2; /* Division of Two Number */printf("\n Division is : ?d",Div); /* Output of Division */
geLch () ;

tul

Principles of Programming and Algorithm 7 > 3 Simple Arithmetic Problems

Output

EnLer First Number: 55
Enter Second Number: 5

Division is: l-l-

PROGRAM FOR DETERMINING NUMBER
IS +VE OR .VE

#include<stdio. h>
inc lude<conio . h>
void main ()

{
int Number;
clrscr () ;
printf("\n Enter Number :");
scanf ('Bd', &Number) ;
/* Check Number is Negative or Positive */
if (Number<0)

t
printf (" \n Number is Negative") ;

i
e1 se

prinLf (" \n Number is Positive") ;

)
getch () ;

)

Output

. Enter Number: - 4
NTlrmhcli s \Teoa l-.ive

l-ll
ltJl

PROGRAM FOR DETERMINING NUMBER
IS ODD OR EVEN

iut

#includecstdio . h>
#include<conio. h>
void main()

{
int. Number;
clrscr () ;

/* Get Number */
printf("\n Enter Number :");

Principles of Programming and Algorithm 7 D 4 simpte Arithmetic problems

scanf (.%d", &Number) ;
/* Check Number i_s Even or Odd */
if ((Number%2| ==0)
{

printf (" \n Number is Even,,) ;
J

else
{

printf (" \n Number is Cdd,') ;
)
getch ()

Output

Enter Number: 3
Number is Odd

PROGRAM FOR FINDING MAXIMUM OF
TWO NUMBERS

lnt,
-q

#include<stdio . h>
include<conio . h>
void main()

t
int Numberl, Number2 ;
/ /cl-rscr (l ;
/*Get Two Number*/
printf("\n Enter First Number :");
scanf ('Bd', &Numberl) ;
printf (" \n Enter Second Number : ,') ;
scanf ('8d', &Number2) ;

/*Check Maximum Number*/
if (Numberl>-Number2)

{
printf (" \n I'irst input number is maximum") ;

)
efse
t

pri-ntf (" \n Second input number is Maximum',) ;
)
getch ()

)
li-rl
ilJl

-

Principles of Programming and Algorithm 7 > 5 Simple Arithmetic Problems

Output

Enter First Number: 69
Enter Second Number: 4
Fi rst i nnrrf nrrmber is maximum

PROGRAM FOR FINDING MAXIMUM OF
THREE NUMBERS

rnclude<sLdio . h>
#include<conio . h>
,.^tl -^t-./\vvf u rllo!rr \,/
{

int Numberl, Number2,Number3 ;

/ /clrscrO;
,/ *Get Three Numbers * /
printf("\n Enter First Number :");
scanf ("?d", &Number1) ;
printf("\n Enter Second Number :");
scanf ("?d", &Number2) ;

printf("\n Enter Third Number :");
scanf ('8d. , &Number3) ;

/*Check Three Numbers For Maximum*/
if ((Numberl>=Number2) && (Numberl>=Number3))

{
printf (" \n First input number is Maximum") ;

)

t
if ((Number2>=Number3) && (Number2>=Number3))

{
printf (" \n Second input number is Maximum") ;

]
el-se

print.f (" \n Third input number is Maxi-mum") ;
)
getch () ;

)

Output

Enter First Number: 43
Enter Second Number: 87
Enter Third Number: 12
Second input number is Maximum

Principles

m PROGRAM
NUMBERS

OF SUM OF FIRST N

ir:Tl
IJI

#inc]udecstdio. h>
#include<conio. h>
void main ()

t
int Number, i-=0, Sum=0,.
clrscr () ;
/x Get Number */
printf (" \n Enter Number : ,,) ;
scanf ("Zd", &Number) ;
/" Sum of N Numbers */
f or (i=l-; i<=Nurnber; i++)

Sum+=i '
print.f ("\n Sum of N Numbers : *rt" Srrm).
geLch () ;

Output
Enter Irlumber: B

Sum of N Numbers: 36

PROGRAM
NUMBER

FOR REVERSING INTEGER

tLJl

#i-nclude<stdio. h>
#include<conio. h>
void main()

t
:-nt. Numberl, Number2 ;clrscr () ;
/* Get Number *,/
printf (', \n Enter Nurnlcer : ") ;
scanf ('%d', &Numberl-) ;printf (" \n Reverse of Integer : ',) ;/* Reverse Number */
while (Numberl>0)

{
Number2=Numberl%10;
Numberl=Numberl/ 10;
printf ('%d',Number2) ;)

getch () ;

Principles of Programming and Algorithm 7 > 7 simple Arithmetic problems

Output

Ent.er Number: 12345
Reverse of Integer: 54327

PROGRAM FOR TABLE GENERATION OF
N NUMBER

#include<stdio. h>
#include<conio. h>
void maj-n o
{

int Number, i=0, j =0, k;
clrscr () ;
/ * (]a|. \Jr rml-rar * /
printf (" \n EnLer Number :
scanf ("%d", &Number) ;
if (Number<=5)

k=2;
el-se

k=1
,/* Print Table Here */
for (i=l-; i<=Number*k; i++)

t
for (j =1; j <=Number; j ++)

t printf ('%d\t',. j*i);
)
nrinf f ril\n'r \.

\ \ff / ,

)
getch () ;

Output

Enter Number: 5

1 2 3 4
2 4 o tt 10
e b I tz 15
4 B 12 16 20
c 10 15 20 25
6 12 18 24 30
7 14 21 28 35
8 16 24 32 40
I 18 27 36 45
10 20 30 40 50

Principles of Programming and Algorithm 7 > 8 simple Arithmetic problems

frn PRocRAM FoR FAcroRrAL

includecstdio . h>
#include<conio . h>
voio main ()

i
int Number. Factorial=1, i=0;
clrscr () ;
nrinf f l"\n F'nl-or l\hrml'ror .ilt

\ \fr lrresr . ! ,

scanf ("%d",&Number) ; /* fnput i,lurrrber ,/
i f (Number<=0)

Factorial=l; /* Assign 1 t.o If Number Is Less chan 0 *l
else
{

for (i=1 ; i<-Number; i++)

{
Factori-al*=i,- /* Calculate Fact.ori-al_ */

)
)
printf("\n Factorial is : %d",Factorial); /* print Factorial- "/getch () ;

Output

Enter Number: 5
Factori-al is: l.20

PROGRAM FOR FINDING SINE OF A
NUMBER

tnlr!=J

-# inc ludecsLdio . h>
#include<conio. h>
void main()

{
f l-oat. Number;
clrscr () ;
printf("\n Enter Number :");
scanf ('%f., &Number) ; /* Input Number */
princf("Sine of a Number is : *f",sin(Number));/* print Sine of

Number * /
notnh / \ -

]

Principles ot Programming and Argorithm 7 > 9 simple Arithmetic prabtems

Output

Enter Number: 2
Cosine of a Number i_s: 0 " 34g9

PROGRAM FOR FTN{DING COSINE OF A
NUMBER

#inc-Lude<stdio. h>
inc Lr.rde<conio . h>
void maino
{

f1oat. Number;
clrscr () ;
printf (,'\n Enter Number : ,,) ;
scanf ("%f ,&Nurnber); /* Iriput-. Number */
pri-ntf ("Cosine of a Nurnber is : %f ',, cos (Npmber)) ; /* print
Cosine of Number ^z
getch () ;

i

Outprtt

EnLer Number: 0
Cosine of a Number is: 1 .000000

Ir'llc==i

F'?fEI pRocRAM FoR coMBtNATroNS
It"-irll il

#inclucle<stdio. h>
#include<conio. h>
float fact (floaL) ;
vord main ()

{
float n, r, np=0, rf=0, rp=0, nrp=0,
clrscr () ;printf ("\n Enter Dist.inct Element n: ,,);
scanf ("%f ",&n) ;printf (" \Ent.er r : ,,) ;
scanf ("'p6f ",&r) ;
rtp=f act (n) ' ,/ * Calcuj-ate Combinat ions * ,/rf -facL (r) ;
rp=fact. (n*r) ;
nrP=nPl (rf"rP);

Principles of and Algorithm 7> Arithmetic Problems

printf ("Number of Combinations is : %f

Combinations */
getch() ;

)

f loat- f act (f loat Numbe::)
t

f loat Factorial=1, i-=0;
if (Number<=0)

Factorial=l; /* Assign 1 to If Number Is Less than 0 */
el se

T-
for (i=1; i<=Number; i++)

{
Fact.oriaf*=i; /* Calculat-e Factor:.al. x/

)
)
return Factorial;

,nrp);/*Prrnt

mE=

Output

Enter Disti-nct Element
Enter r: 2

Number of Combinations

5

: 10.000000

PROGRAM FOR PERMUTATION

n:

include<stdio . h>
#incfude<conio.h>
floac fact (float) ;

void main()

{
float n, r, np=Q, rp=0, nrP=Q'
clrscr () ;
nri nt- f / ,, \ n Enter Distinct El-ement n: ") ;y! 4Ire! \ \.f s..e

scanf("%f",&n);
nrinl-f /'\n E'nl-ar

\ \A'
!^r ev-

)
t
{

scanf ("%f" , &r) ;
nn=fact (n\ . /* Calculate Permutataons1rP-!qvu \ffl ,

rn-€=af /n-v\ .
!r/-lqeu \rr !, ,

nrp=np / rP '
nrint.f ('tlrlrrmhcr Permutation afe :%f",nrp)y! +arur \ trsrrLr/v!

qetch () ;

loaL fact(float Number)

float Factorial=l, i=0 ;

if (Number<=0)
Factorial=l-; /* Assign 1 to If Number Is
else

; /*Print Permutatior;r * /

Less than 0 */

Principles of Programming and Atgorithm I D 11 simpte Arithmetic probtems

{
f or (i=1 ,. i<=Number; i.r+)
Jt

Factorial*=i; /* Calculate Factorial *,/
))

return Factorial;

Output

EnLer Distinct Element n: 5

Number Permutation are: 20.000000

PROGRAM FOR PASCAL TRIANGLE
i-rl
t|Jl

#include<stdio. h>
incfude<conio . h>
void main()

{
int i=1 ,)=I , k=1,l-=0;
clrscr () ;
/ * Print Pascai Tri ncrl e * /
for (i=1; i<=5; i** i-
{

for (1=5; 1>=i; 1--)printf (', ',) ;for(j=1;jci;j++)
{

printf(,,8d,,,j);
)
for(}c=j;k>=1;k--)
{

printf (', tsd', , k) ;
)
prj_nt.f (', \n\n,') ;

)
getch() ;

Output

1
I2

1

L2

34

1
2t
5Z
43

1
21_

Principles ot Programming and Algorithm 7 > 12 _ Simple /\rithfnetic.Problgms

PROGRAM F'{"}R i:flN}JfrluG trMHV{A

NUMBER

tf tllL ll#

#include<stdio. h>
#include<conio ' h>
void main ()

t
int NumbeY , \,);
clrscr () ;

/ * Get. Number * /
Printf("\n Enter Number t");
scanf ("%d", &Number) ;

/* Check Number is Prime o:: Not. o,/

f or (i-=2 ; i<Number; i++)

t
if ((Number%i) ==0)
{

printf (" \n lJumber is Not Frim€r : %d" ' Number:) ;

getch() ;
rol-rrrn.

i
)
printf (" \nNumber is Prime : eod" , Nurnber) ;

geLch () ;

Output

Enter Number: 7

Number is Prime: 7

PROGRAM TO FIhID FACTORS OF' A
NUMBER

rt:l
=
includecstdio . h>
#incfude<conio. h>
void main()

t
int. Number , i,) ,k=2;
clrscr () ;
printf("\n Enter Number :");
scanf("3d",&Number);
k=Number;
for (i=2 ; i<=Number; i++ 1

_ Pritrciples oi.Prograntming anci alwrithnt 7 > 13 simple Arithmetic problems

,|

for i j =Number ; j>=2 ; J, -)

{ rf((r*j)==k)
{

print.f (,,%clx%c',, r, I) ;
break;

I
j
k=.-j;

J

getch () ;
I

Owtpu{

Etrter fl,,.lni'.lel : L.?

2x6 3x2

Pffi # G &?AF,g Fr{'}F? GRAATEST C OMMON
$)gt/[$&gq .r$n:TXvVf;EN TWO NOS

1l include <st.dio " h>
i.nc lude<coni.o . h>
I'oid rnai r-r ()
t

int lhllittlsrl. , N,rrnr_'::.i: ?. , t , -: ;
clrsc.:r (l ;
,/ *Get- 'li^.ro l.Jumbe;_ s *,/
p-rint.f (,' \n E:iri,:,::- i' j r-sl Nu,rLb.,r i.. : ,') Iscanf (" %d" , &li,r :11,.'r' r.) ;
prinLf (" \n Er:,.-, . ,|r:corrd \Iu:rLl>t-: ; ,') ;scanf (' %d", &|lurnbi:r2) ;
/ *Assic'n I,laximr-rm Nr-:mbe,r: r,/
i f (Nurnber.-'1 -,llr,rmber2)

i =Numl;er ,i. ;
else

i =Xlr,rmber'2 ;
for (; l>=f i " '

t
i-f ((AlumberL\t) =,.i) &t (I{urrirrer2r}t)==0) /* CalculaCe Fact.orial*/

br:eak;
l
prrntf (" \n GCl,.r Betweeri Twc Nrrmbers : %c1" , r) ;geLch () ;

l

Principtes of Programming and Algorithm 7 > 14 Simple Arithmetic Problems

Output

Enter First Number: 15
Enter Second Number: 3

GCD Between Two Numbers: 3

PROGRAM FOR SWAPPING OF TWO
INTEGERS

#include<stdio . h>
#include<conio. h>
void main()

{
.i nt- NTrrml.rorl I\'hr6h^" T6h^.

- -, ^.-ltug! - , L=lrrt/,
clrscr () ;

/*Input Two Numbers*/
printf("\n Enter First Number :");
scanf ("%d', &Numberl) ;
printf("\n Enter Second Number :");
scanf ('%d', aNumber2) ;

r * {r^renni ncr of a Number* // vrfsPY4^Ay v+

Temp=Numberl;
Number 1 =Number2 ;

Number2=Temp;
printf("\n Number l- is :8d \n Number 2 is :8d",Numberl-,Number2);
getch() ;

Output

Enter First Number: 3

Enter Second Number: 6
Number l- is: 6

Number 2 is: 3

,F.,tt. 9..[. s.i. .[..9. s..
1. Find the output of the following program:
#includecstdio. h>
int a=0 ; / * This is a global variable * /
void foo (void) ;
int main (void)
i

int a=2; /* This is a variable 1oca1 to main */
int b=3; /* This is a variable local to main */
printf (" 1. main-b = %d\n" , b) ;
nrinff("main a = Bd\n", a);vr lar e !

fooO;
printf("2. main b = Bd\n", b);

I

Principles of Programming and Algorithm 7 > 15 Simple Arithmetic Problems

void foo (void) {
int b=4; /* This is a variable local to foo */
princf (".Eoo_a = %d\n" , a) ;
printf("foo_b = %d\n", b);

)
2. Study the below program and explain the call to functions and their response
#include<st.dio . h>
/ * Examples of declarations of funct- j-ons * /
vord squarel (void) ; / *Example of a function without input
parameters and wiLhout return value*/
void square2(int i); /*Example of a function wiLh one input
naramptor and roithout return value */
int square3(void) ; / *Example of a function wit-hout. input
naramFrFrs and vri f h i nf ocrer roturn va]-ue */

int square4(int i); /*Example of a funclr-on with one input
naramFf er anfl wi f h i nl-dtrdr 16rrlrll VaIUg "/

inL area(int b, int h); /*Example of a function with two input
n^r;mcf Frs and wi 1- h i ni-eoer rFtrrrn value */

/ * Ma i n nrocrram: ITqi na the rrari nus f unctions * /yr vY ! srrr .

int main (void)
i

squarelO; /* Calling the squarel funct.ion */
square2(7); /* Calling ihe square2 function using 7 as actual
naramcfpr corrFsn()ndino to the fnrmal naramel-er i */
vq! qrLLU uur vv! ! ulyvrrurrrv

prinLf("The value of square3O is %d\n", square3O); /*Ysing the
square3 function *,/

prinrf ("The value of square4 (5) is %d\n", square4 (51); / *Using
t-he square4 function with 5 as actual parameter corresponding Lo
).* /

prinLf("The value of area(3,7) is %d\n", area(3,7));/* Using
the area funcLion wibh 3, 7 as actua-I parameLers corresponding

to b, h respecLively *,/
J

/* Definitions of the functions */
/* Function thaL reads from standard input an integer and prinLs

it ouL together with its sum */
void squarel (void)
{

int x;
printf("Please enter an integer > ");
scanf ("%d", &x) ;
nri nf f r n'T'l-ra cfll r^rp of *fl i s S^d\n" , X, X*X) ;yr +rru!

)

/* FuncLi-on that prints i together with its sum */
void square2 (int i)
{

nri ntf (',The S1^',,:16 aF *d i c e.rl\rr" , i, i* i) ;v!+rru! \ f lre

i
/* Functi-on that reads from standard input an integer and r:eturns

l-ts square * /

Principles*af Programming and Algorithrn 7>16 Simple Arithmetic Problems

i-nf sjcluare3 (voi-d)
t

lnt -{;
prinLf ("Ple.rsL-
s;canf ("?;d", &x)
reLurn (-x^x);

I

erlLer .rn i-nt-eger);

F-unct. ion Lh.rL rer-rrrns the square of i * /
int scyuare4 (irrt- i)

t
r.crLurr-] (i.*i);

i
.1 ^ F'urrction th.rt reLurns the area of fhr: rertanole with base b

arrct hight- h */
jnt, are';r (int b, int h)
I
L

reLuln (b* h) ;

)

B. Progr.rrnming erxercises

1

',

3.

4.

5.

tr.

7.

o.

Wlttt'a proqlar)r in Cl to fincl ttrt: r'oots uI t:qutrticln usinq cluadratic l.l(Iucition
to Lrtt rt lrr.

tVrite a I)rocJram in C to find largcst of n nLrmbr.:rs.

Write a pr'o(rrallr irt C to sort numeric: inteqcr n in asc:ernclit'rq oxler,

Make use of t.,t'o dimensional arrays to show adciition oI t\ ro rr]at]'tccs.

tJse while loop and generate tables 1 to 10.

Write it proqrdrlr in C to denlonstrate usn of nested for'.

Writc a pfoqranl in C to find properr factols.

Write a program rn C to accept yorrr narne, age and dddress.

ffiIhCTHffiNS

INTRCIMUC"flgOTd

Fnuctions arr: tlte builciinq blo,-_-ks 'rf (-l irlc{ irrc r-'enti'cli icr
the philosophy of C prograitl desicln.

nrain() is the innction r,r,helc e:<st('ritiorr be-,gins. Thc ofirt,r
when they are called ciiler:t11, or inc.iiicr.tly hy rrrailr.

It is ntandlartclry to l]air'e.l stnqlt: iilirrr()fliir-li,.lr !ir
folklwirrg sections, rve slrtrll l.;c slirtlyinr; ilii)ie (liioril rn.iiil ;,ri:ij

fl nroiirarnrninq aurl frl

fu ttctions .t'r'e elxccr I Ic'{i

r. ,'(:iV i)ar liJ i rl Jtl. I rl i iir'
olirr.r- lti rii:l irtirs.

:;!aIL:;:;i.n1 :; t[to I

III iiij ili Ll(l r{}i!1.

ti I'tiiL tr;

;il,,lill.t:,

:l I),rll'{. (,i

WF{AT $$ A $r{Jfil$:"$."X{nf-;?

Tltet proqr.rttr de-u'clotrlrirenl cylie rlr'lirdr:s r_-:ti)i)irtilt;tridl,,i:,i:;, lii.li,l1r11 clt,litrtilrir:,
tltlsign ant'l t:oding. Thg t'otlp r'{ il 1t,i ,rf ir!:ii!i,,.lii)lr:i 1t rl jilt;1f i)j r.;r-riiijr..i.r,..(, ,,,.litt.lt
pc.floilnS the si)eclfied task. 'Rrtal ',v()r'lrl' .r1ttr!iir.il.illr.rs i)1.i,irjj ini., -:t{, l,,ritr .,ilil
ccltltpiex. Tlttlloftlre i[is irtoll 1or1 ii-.ri ilr)r] r',rn,.,o11ii..rt1 i.t, i;ir',iL.i.ii; {ltl i, rjr, irri()
smaller, cornpdct and iD{lre ruarracll.ai.,.1t': ilii.r:(l,.ri::i, r.,l1lc,:1 ii.;lr.ii()6r.j.

Dcf in it io n

A function is a named, iirdeperrcleirt or- st,jt., liririir:. ii i,tij(i\ {ri
perfolms a specific, lve:Il defin,,:cl talk ;;i-rri iliiy f{tlltfi-i i: \,filiti.i.; ili _. i

r A fulctiol rs nauled. Each fr,r;.,:iLori i:; rderriili::ri !rj,-{r i.i ilrrll,ij,r iidilu,

, !t,:i

tiil.

(or called) r-rsing this irdlrle.

r A function is inclepelnd{'tit. Ii lr:.; iri:!'J{li1il t:l,r ld::i., :-11r il., r1'.,, i:. ll. rrriLl
own variables altd constaLlLs t.lr i._rt.r usr--r.l ciliy i,,,l1i;ni ljri: tirtrr:irutr.

r It perfouns a speciflc tash: A frrnciio;r i-, gi.
the overall progrant. Tire tasl.- has to be ,,veil

e It t--al retul'n a vahre tc ihe r,.iilil;rt
altcl olJtionally rettirn infolrl,lttt-.n lrr

I)r,. 1

Principles of Programming and Algorithm I > 2 Functions

qIIFI FUNCTIONS AND STRUCTUREDE

PROGRAMMING
Functions and structured progranming are closely related. In structured

programming, independent sections of program code perform program tasks.

Fdvontcges of functionr

t. Modular or structured programrning can be done by the use of functions.

2. By following the top-down approach, the main function can be kept very small
and all the tasks can be designated to various functions.

3. Troubleshooting and debugging becomes easier in structured programs.

4. Individual functions can be easily built and tested.

5. Program development becornes very easy.

6. It is easier to understand the program logic.

7. Multiple functions can be developed and tested simultaneously thereby
reducing the program development cycle time.

B. A repetitive task can be put into a function that can be called whenever
required. This reduces the size of the program.

9. Frequently used functions can be put together in a customized library.

10. A function can call other functions. It may even call itself. This technique called
recursion is very useful in solving complex problems and writing a compact
code.

ffi How A FUNcrroN woRKS?
A C program does not execute the statements in a function until the function rs

invoked or called. When the function is called, control passes to the ftrnction and
returns back to the calling part after the execution of function is over.

The calling program can send information to the functions rn the form of
argument.

An argument stores data needed by the function to perform its task. Functions can,
send back information to the program in the form of a return value.

Function calls and returns can be illustrated by the following example.

Principles of Programming and 4lgorithm 8) 3 Functlons

main () callsfunc'l() and func2 (); funcl () callsfunc3 ()

Figure 8.1

Note: A function can be called as many times as needed and can be written and
called in any order.

LIBRARY AND USER DEFINED
FUNCTIONS

In a C program, functions are of two types.

1. Pre-defined functions or library functions.

2. User defined functions.

The pre-defined or library functions are pre written, compiled and placed tn
libraries. They come along with the compiler.

User defined functions are written by the user and the user has the freedon to

choose the name, arguments (number and type) and return data type of the function

One of the greatest features of C is that there is no conceptuai difference between
the user defined functions and library functions. A user can write functions, collect
them and put them into a library, which can be used by anyone.

In trris chapter we shall be mainly studying user defined functions.

Stondord Librory Fonctions

Some commonly used library functions are given in the table below. We shall
using some of them in the later chapters. To use a library function in a progratn,
corresponding header file must be included in the program.

be
IIS

P,!jt:E t e ::f!gg!!n n i n gi n d a ! E c i i! ; t !, 1 I ,:;4

1. steile .i't

rnt scanf lroirsi chai ' :cin.i:al,1ail,iiesl,

ini sprintf (char. bulfei, char - icrr-nat,

l);

Functions

sscanf int sscnf iccnst char - hu{ft:r.

Ig9i]tgtt,,_,l:),_ ,-
ini fflush (iiie -);

ccirst cna

n Ffh l"?

!!

rJ,J,'Jiil.,li

Purpose
gets a character from stdin
writes a character to stdout
gets a string from stciio

outputs a string to stdout
writes a character to stdout

l);
scans and formats an inpul
from stdin

argument , wrltes formatted output to a
sIflng

r . format scans and formats input from
a slflng
flushes a stream

x is in radians)

Principles of Programming and Algorithnt O FJ

4. stdlib.h

Prototype

system

Just as variables used within a prcgr.ur irave ir
The function declaration is callr:C thr-'iui-:i-ii,:;-
following irrformation to the compiier.

e The name of the functron.
o The return data type (optional, default is rritegt-'r'I.

. The number and type of argrrrnents that 'vili
argument narnes need not be specifieC.).

A prototype should always end wrth a semicoion.

functi a!ua

;,i. ,1:,i:i,.tr li j, :,,r i1: 1l1t ii.,ticti,-iils.
i.il'rttiiir-.'ii,'.' :r t '11 i1. ;lrovid cs iiri-

lr
1., '...., ii ;, r ;11, r:t l '..tirili. {"; i,',

int sum(j-rrt, int, int-);

double atof (const char.-s)*-

FU N CTE G I\ g) Fi ri;: [,Fl' [1*',rl"i ;r*i. i'ql'{];'ffi i{J
DEFTru[T'H$iS

f.

ii
l1

int sum(int a, int b, int c);
. void display(void);
j . double square (doubte numlror) ;

OR

Function dcfinition
The function definition is the actual function. The definilion r:onlair.is the codc thal

will be executed. The first line of the definition.alled iiie iuncticm heorder siir;rrici lle
identical to the function prototype with the exception of tire seliicolon. The axj,-utienl
names have to be specified here. More about tliis, rl the nexi se(rti()r'i.

Svnlox;
eI:urn- E

Principles of Programming and Algorithm I >6 Functions

WRITING A FUNCTION

Examples:
inL funcl (....)
float func2 (. . .

void func3 (....)

b. The iunction name

,/* funcLion call */)
/ * function def initi-on * /

Each function definition has the followinq form

Ref rrrn f vne f rrncf i on namc {n^ramFtcr I i et I\ Pur qrrrs - - -
Jt
docl ar:j_i nnc.
qi^l amanl-a.

)

The function header
The first line of every function is the function header, which has three

components.

a. The function return type
This specifies the data type that the function returns to the calling program. Il
the function does not return a value, the return data type of void is used.

/* Recurns an integer value */
.) /* Returns a tr;ne flnef x/

/ * ReLurns nothing t/ ..
i.

d
""ii' '\,jr

The function name can be any valid C identifier. The function name has to be
unique and it should be preferably narned so as to reflect the purpose of the
function

c. The parameter list

Function parameters are the means of communication between the callinq and
the called functions. They can be classified as:

o Formal parameters (or parameters), which are given in the function header.
r Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type and name of the pararieter. Cornmas
separate multiple parameters. For each arglrment passed in the function call there
has to be corresponding parameter in the parameter list in the function headers with
the same data type and the order in which arguments are sent. Examples os foJlows:

i. main ()

i int. x,y, result;
resul_L = sum(x,y) ;)
int sum(int a, int b)
{return a + b}; '

in this example, sum is a function accepting two integers and returning an
integer. x and y are the actual parameters. a and b are the formal or dummv
paramerers.

ii. float area(f1oat radius)
area is a function returning a float and accepts one float argument.

Principles of Programming and Algorithm 8 > 7 Functions

iii. int max(int. a, int b, int c)

max is a function accepting three integers and returning an integer.

iv. int random (void)

This function returns an integer but takes no alguments.

The function body
The function bodyis enclosed in braces and imrnediately follows the function

header. It consists of,

a. Declarations: You can declare and initialize variables within a function. These
are called local variables, which means that they can be used onJ.y within that
function.

Example:
float area(float radius)
{ f loat resul-t;

const f loat Pi = 3.!42;

: . .: : .
/*

,function
code */

b. Function statements: These statements perform the specified task. There is no
limitation on the statements that can be included within a function.

However, another function cannot be defined in a user-defined function.

c. The return statement: The keyword return is used to terminate the executiou
of the function and return program control to the calling program'

Synlox:
return,'

Example:
if (n< 0)
16+-rrrn.

It is also used to return a value to the calling program. (A function can accept
any number of values but can send back only one)
Syntox:

r6Frrrn lovnroc<i nn) .
\ virv!

OR
16r1r7n ovnraqqf on.

Example:

ret.urn (0) ;
return(a+b);
return ++l-;

A return statement at the end is optional for functions not returning a value. There
may be multiple return statements within a function but only the first return
statement encountered during control flow wiII be executed.

Principles of Pngranrting arid Algoritlitr; I F I Functians

!:i;riiii,rrfu-:

inL :lax (irh a, j r.t. b)
i i-f (a>b)

r'r:trll-n ;, '

t: L l- \:l

r-eturn b;

CAE.,LIIS G A [TqJ i.$ {-]TI OIV

\ [ttrtc[irtti ron be to]k:cl by flr,o l,i'cvs:

i. Atty iurrr.-1loti cillt bo caili-:tl bl,siniplf iising il.s nantr) alltd argulnclnts alone llt a
statetri.ut as sho$iit. if lhr: itiiiriion her a ie:turn vcrlue, it is cliscarded.

l-xrrrrrple:

disp.-mrlssaqc();
Clrsrplay,.vit lLi.E: !r:i ;

,l 'I'irc scr;ottcl trt<-'thoci calt be usrrd only with functions lhat return a value. Sinr,.c
thtly rt."lttrn a value, thcy cein be trserd anywirere a C expression cau be used: 11
a;rtititf s1iilelrt:ill, otl tlic riqht :;irlr: of an assiqnment operalors,etc. Here are
..')it)', (t\(l lltplCS.

i " printf ("Square of %ci is % c1', , x, square (x7 ,1 ;
ii " are.t : c.e.1 cu Lat.e_,-area (radrr,rs) ;
iii" Sum*of-_all ,- sum(a,b) 1. suni(c,d);
i'r. j f (sr,rni(i1 ,b) '1(',) (r)

I
/ * stat.ement,s * r,)

v. rnaxr rnunr ::: lr-iLax (a , 1,.) ;
wi. inax__of--three ,= nrax(Lt , max(a,b));

X'ypes of funatians
{. FunEtions with no qrEunrents snd no rcturn vclucs

'l'ltesc lttttt tiorts rlu no[[ake ony inlorrnalion fronr tlrc calling function nor (lcr

llrly 1t.tss b;rci< irrry v(tlu('. Srrr.li frrrrr:lions are cotlntrJnly usecl to clisplay
ntes sitsJes.

3xonr;:r1u

i.
j+ incf uCe<stclio .]r>
,n.-..in ()

{ void er'{:r€t (voic1) ; / * f r.rnct ion prototype . /
c;reet-(); /, function call */

]
void greet(vord) r* funcLion definit.ion *l

{ 6rr-int f (" \n l"{el .l o ancf welcome to C,,} ;

lllgiptg::llroryylgjndAtgorithm B yg Functions

2.
#include<stdio. h>
main ()

{ int n;
void error_msg (void) ;
printf ("Enter the value of n :', \ :
scanf ("%d", &n) ;
if (n<0)
{ error_msg();

exic();

l

l
void error_msg (void)

{ nrinrf 1\\Err^r t rT6^-Fi-,a -.-1,,^r y4 +rrL! \ !!!v! . rl=vqLr r= totug") ,.

)

b. Functions with orgomcRts ond no rctorn voloc
Here, the function accepts arguments but does not return any value back to the
calling program. It is a one way communication i.e calling program to function.
In such functions, the result of operations on the arguments may be displayed
from the function itself.

Example

Demonstrate functions

Itil
/' Calculate and display the area oi a circle ./

#includecstdio. h>
mai-n ()

i float radius:
void area(f loat) ; ,/* funct.ion protoLype */
printf ("Enter the radius : ,,)
scanf ("%f" , &radius) ;
Araz I r:rli rrc \ .

)
void area(f1oat r)
{ float resulL ;

const float. pi = 3.L42;
result = pi*r*r;
printf (.'the area is %f ,,, result) ;

)

c. Fonction qcccpting orgomcnts and rctolning o voloe
Such a function accepts information and also returns back a value to the callinq
program. Thus, there is a two way communication between the two.

Example: We shall modify the above program such that the function area now
returns the calculated value back to main.

Principles of Programming and Algorithm 8 > 10 Functions

tLlt ,

/' Illustrate function returning a value '/
#include<stdio. h>
main()

{ float radius, a;
float area(f1oat) ;
printf("Enter the radius :");
scanf ("%f", &radius) ;
a = area(radius);
princf (" \n The area is e"f " , a) ;

i
float area(f1oat r)

{ const f loat pt- = 3.L42;
rafrrrn lni *r*rl .

i

fipt PASSING ARGUMENTS To A FUNcTIoN
There are two mechanisms lo poss argLtmenls ,o e function.

1. Call by value

2. Call by reference

In C all function arguments are "passed by value". This method copies the value
of an argument into the formal parameter of the function. Changes made to the
formal parameters have no effect on the arguments in the calling function.

The following example jJJustu-otes this concept

/' Program to demonstrate call by value '/
#include<stdio . h>
main ()

{ j-nt num = 10;
void modify(int);
printf("The value of num is ?d",num);
mnrli fr; f nrrm\

\ rfsfr./ ,print.f("\n fn main the modified value is %d" num);
]

void modify(int num)
i num - 20;

printf("\n In the funccion num is I d", num);
)

Output
The vaLue of num is 10
In the function num is 20
In mai-n the modified vafues is 10

Principles of Programming and Atgorithm B > 11 Functions

In the above pr-ogram, thc variable nunr has a value 10. When l-he function rs
called, this value gets copied into the variable num which exists only in the functior-r
modify. So, even if its value is changecl it does not affcct the variable in rlain. As soon
as the function modify ends, the variable num in this function ceases to exist. Back rn
main, the variable num still retains rts oriqinal value.

Example:
Here is another program demonstratinq call by value. The airn is to inter-chanqe

the values of two numbers.

/' Illustrate call by value '/
#i-nclude<stdio. h>
main (i
{ inc a=1-0, b=20;

voict swap (int-, inL) ;
printf ("Before interchange a=%d,b=%d,,, a,b) ;
swap (a, b) ;
printf (" \n Af ter in*-erchanqe a=%d b=%d,, a, b)

ri-li
=tr

-,^i I ^,,-- / i *!vvru >wafJ \ fttL x

{ inc temp;
Lemp-x; x=y;
printf ("\n In

, lnc y)

y=temp;
the funct

Output
Before interchange a=10 b=20
fn the function x=20 y=10
After interchange a=10 b=20

In thrs program, the values of a and b get copied into variables x and y
respectively. The function swap interchanges the values of x and y but the values ol
d culd b rcmain r-rnchanged.

The function can access only the variable value but not the original copy of the
variable. Thus, it cannot modify the original variable. An exception to this rule is
whertt au array is passeci to a function. Arrays wiil be covered in details in the next
chapter.

Advantage: Passing by value is the clefault method to protect data from
inadvertc nt rnodification.
Coll by rcfcrcncc

In this method of passing argtulents, the called function has access to the original
argument, not tht-- local copy. Lanquages like Pascal ancl Fortran allow this method.

Although the C language allows passing of argumerlts only by value the call by
reference method t'an be simulated by the use of addresses and pointers. This allows
the function to directly access the original variables and modify their values.

ion x=%d y=Yd", x,yl;

Principtes of Programming and Algorithm I >12 Functions

We wili rewrite the program to interchange two numbers but in a slightly different

way.

lT'=Jl _--: I'Creating a call by reference to slvap two nurnbers 'l
#include<stdio . h>
main ()

{int.a=10,b=24;
voi-d swap(int "x , int *Y)

;

princf ("Before swapplng a =

swap (&a, &b) ;
printf("\n After swapplng a

)
void swap(int *x, int. dY)

i int temp;
temP = ";1 ' *x=*Y; *Y=temp;

In the above program, the values of variables a and b have to be interchanged bY

the function swap. Thrs wili only be possible if the function has an access to the'

original variables. Since it is not possible by thc cati by value metirod seen earlier,

some other method has to be used.
Since the addresses (nemory location) of the variables are unique, if the function

is given the address of the variable insleacl of its value, the function will be direc.tly

referring to the original variable. Thus, the addresses of variables a and b are passed

using the & (address) operator.
The addresses need to be stored

declared as int '.x and int *y. The
address is stored in its oPerand.
variable b. Thus, by altering 'x
b respectively.

%d b = %d", a,b) ;

= %d b = %c1", a,b) ;

in special variables called as pointer variables,

'r'operator is used to access the vadable whose

Thus, 'x refers to variable a and 'y refers to
and 'y, we are alterittg the values of a and

FUNCTIONS WITH VARIAtsLE
ARGI-IMENTS

It is possible to declare functions with variabie nutnbers of arguments. Such

functions are called "Variable" functions. Some standard library functions can accept

a variable list of arguments (such as printf).

A function is also defined as variable using an ellipsis ('...') in the algument list
The function is called by passing fixed arguments foliowed by the additional variable

arguments.

Example

frrnnl /inl-v)int
{
)

Principles of Programming and Algorithm g y 13 Functions

Here, frincl is a function with one fixed argument and the ellipsis inclicates
riariabie a.rguments,

Acce s s in g va riab le a rg u ments

Since variable arguments have no narnes, they must be accessed sequentially
using special macros from "stdarq.h". These macros are:

i. .,'a_list

ii. r.a_stad
iir. va*end

Example

int addnos (rnt count , ...)

{ va_lisL ab;
i-nt i, sum;
va_start (ab, counL) ; /^- Init.ialize the argument. 1ist. */sum=0;
for (i = 0; i < counr i++)

sum = + va_arg(ab,int); /* Get next argument*/
va-end(ab); /* clean up*/
return sum;

]
main ()

{ printf ("%d\n" , adCnos (3, 5, 5, 6)) ;
i * This prinLs 1-6 * /
printf ("% d\n", addnos (5, 10 ,20,30,40,50)) ; /* Thrs prinrs I5O* /

ffi COMMAND rINE ARGUMENTS

So far we have been usrng main with an empty pair of parentheses. In
envrronments that support C, there is a way to pass arguments or parameters to main
when it begins executing i.e. at runtime.

These arguments are calleC command line arguments because they are passed
irom the commanil line during run tirne.
rrroin js celled with two nrgumenls

i. int argc - argument count which is the number of comrnand -line arguments
the program r,vas called or invoked wlth.

ii. char ' argv[] - Argument vector. It is an array of pointers each pointing to a
comntand lin c argument.

Dcclqrqtion of msin
When main has to accept command line arguments, it has to be declared

differently. It is declared as
mai n (int argc, char *argv [])

{

i

Principles of Programming and Algorithm I >14 Functions

. The subscripts for argvI I are 0 to argc-1.

r 611grr[0] is the narne of the program.

r It rs not tiecessal'y to use the words argc and algv aud any othels will also do.

Howevr-.r, they are used conventionally, so it is better to stick to them.

. Thet afgLlments have to be separatecl by white spaces. If a space is to be given as a

palt of an arltument, the argument along lvith the spaces can be specilied in
d<,ruble quotes.

Example:

A simple progran ls the program Display which echoes its courntand line
argLrureuts on the screen. If the comrnand is given as

Display argumentl 10 abcd

The output should be

argurnentl 10 abcd

For this example argc : 4 and the arguments will bel stored as:

argv

argv [0]

argv [1]

argv [2]

argv [3]

argv [4]

The program will be:

Examples

1. /' Displays command line arguments '/
inc iude< s t dio . h>
main(int argc, char "argv[])

t
int i;
for (i = 1; i< argc ; i-++)

printf("%s%s",argv til, " ");
]

2. /' This displays all
#i-ncl-ude <stdio . h>
main(int argc, char
t

while (-- argc
nri ntf t "%s %s",

i

the command line arguments in the reverse order'/

*arqv t I)

> - 0)
argv[argci, " ");

Principles of and Algorithm Functions

Advantages of command line arguments

r' Arguments can be supplied during runtime. Therefore the program can accept
different arguments at different times.

ii There is no need to change the source code to work with clifferent inputs to the:
program.

Example: If a program is to be written without using comrnand line argurnents
for copying the contents of one file to another, both filenames will have to be
specified in the program.

By using colnmand line arglrments, the program can be run with different file
nanes every time since the code in the program will refer to them using argv[]

iii' There's no need to recomprlc'the program since the source code is not clanqed.

We shall be studying rnore about command line arguments.

Frrt RECURSION
Recursion is a process by which a function calls itself either direcily orindirectly. It is called circular definition. Direct recursion is when a statement in the

body of the function calls itself. indirect recursion occLrrs when the functlon calls
another function, which in turn makes a call to the first one. They are conlmonly usedin applications in which the solution to a probLenr can be expressed in te11s of
successively applying the same solution to subset of the problem. Two irnportant
conditions should be satisfied by any recursive function.
r Each tirne the function is called recursively it must be closer to the solutron.
r There must be some terminating condition, which will stop recursion.

There are many examples of recursion. One of the most common exanple is the
calculation of the factorial of a numbers. The factorial can be stated as :

1' The factorial of 0 is 1 and the factorial of any positive integer is the product of
all inteqers from 1 to n.

2' The factorial of 0 is 1 and thc factorial of any positive integer n is the product of
n and the factorial of number n-1.

The first definition is iterative while the second is recursive and represented as

Principles of Programming and Algorithm I > 16 Functions

m'- 1t Using a recursive function to calculate factorial '/
inc lude<stdio . h>
main ()

{ rrnci nnod i nl- n- *,-- ..um;
unsigned int factorial(int n);
nr i n F f

nri nt F

)
unsigned int factorial (unsigned int n)
{ j-f (n ==Qlln ==1)

return(l);
^t ^^

return (n* factorial (n-1))

)

"\n Enter the vaiue of the number:");
"%d", &num) ; .,

"\n The factorial of %d is %u" ,num, factorial(num));

Output
Enter the val.ue of the number: 3
The factorial of 3 is 6.

The function calls are deDicted below:

Figure 8,2

i.e. 3! = 3 * factorial (2)

: 3' 2' factorial (1)

= 3'2'1

-6

=3
from
main

lo
main

3 . factorial (2) | return 3- 2- 1

n=2
2 "factorial (1) | return 2-1

n- 1

no further calls relurn 1

Principles of Programming and Algorithm I > 17 Functions

Disodvo ntoge

. Recursive functions may not provide saving in storage since a stack of values is
being processed has to be maintained by the system.

It wili not be faster than iterative functions because function calls and returns
take longer.

6idvq ntqge

. F{owever, recursive code is much more compact and often much easier to write
and understand than the non-recursive equivalent.

Morc cxqmplcs of rcculsion
1. Computation of Fibonacci series

0, t, 1, 2,3, 5,8,

Each element in this sequence is the sum of the two preceding elements. The
series can be defined by the relations.

fib (n) = n if n::0 orn::1
fib (n) = fib (n-2) + fib (n-1) if n>=2.

The following program displays the first 'n' fibonacci numbers using a recursive
function to calculate the n"' fibonacci number.

/' Fibonacci series '/

#incl-ude<stdio . h>
main ()

{ int. num, i;
unsigned inL fib(int); */ function prototype */
nri nl- F / ttIJ^r^r m:nrr nrrmharq. ' \

scanf ("%d", &num) ;
printf("\n The first %d, fibonacci numbers are : \n" num);

/* display the n numbers */
for (i=0; i<num, i++)

printf (""0u\t", fib(i)) ;

)
unsigned inl fib(int n)
{ if (n<=1)

return (n) ;
return (fib(n-2) + fib (n-1r r;

)

Principles of Programming and Algorithm I >18 Functions

Output
How
The
01

The recursion

manru nrrmhorc. q
!

first 5 fibonacci numbers are :
i23

tree in the calculation of the fifth fibonacci number is:

Figure 8.3 : Recursion Tree

'2. The recursive relation can define calculation of Greatest Common Divisor
(GCD) of two positive integers.

gcd(x,y) : a ify=-g
gcd (x,y) - gcd (y,x%y) otherwise

The recursive function can be written as:

int gcd(rnt x, inL y)
t

if (v==0)

return (x)
^: ^^
return (Scd (y, x%y)) ;

i

and it can be uscd in main as

/d

Principles of Programming and Algorithm I > 19 Functions

EI
/' Calculation of GCD using above iunction '/

inc lude<math . h>
#include<stdio. h>
main ()

{ int a, b;
prinlf ("Enter two numbers:" \ ;

scanf ("%d %d", &a &b) ;

a = abs (a) ; ./* i i a is negative, converc it co positive *,
b = abs(b) ;
print l { " \n The gcd of ad and %d is e.d" , a, b, gcd (a, b)) ;

)

Output
Enter two numbers : 25 20
'Ihe gcd of 25 and 20 is 5

Nole : abs is a function which returns the absolute value of its arguntent.

rET| FUNCTION RETURNING A POINTER

A function can return a pointer to the calling function. The function header heis to
be declared as

@
Example:

i. int'f1(irtt);

f1 is a function accepting an integel and returning pointer to an integer.

ir. cltar "f2 (int ', int ');

f2 is a function returning a pointer to datatype char and accepting the
addresses of two integer argunents in two integer pointers.

Examples

1. /'This program accepts the addresses of two integer variables and returns the
address of the larqer variable to main '/

li.-ll.;*l
include<stdio . h>
main ()

{
inc *Iarger(int *, int*); /* prototype */
inL n1, n2, *max;
nri ni- f / "F.nt- ar the t.WO nUmberS : " \ ;

scanf ("%d 1td" , &n1 , &'n2) ;
max = larger(&n1, &n2);
nyl-ff /\\\n rTlLra ldrdor rr:lrre is 9"d", *maX) ;yrarlur \ \rr rrr!

Principles of Programming and Algorithm I >20 Functions

rnt * larger (int *ptrn1 , j nt. *pcrn2
)

t
if (*ptrnl>*ptrn2)

return (ptrn1);

return (ptrn2) ;
j

Outpwt

A. Predict the output.

Ent.er Lhe two numbers: 10
The larger value is 20.

20

Ex g,.t.s.l.$..9.s.,
I

maj-n ()

{ int i;
for (i = 1; i<=5; i++)
i pr j-ntf ("%d" , i) ;

main();

]

2.

main()

t rnta=10,b=15;
change (a, ab) ;

Printf ("ee d%d" , a, b) ;
]
change (int. x, int *y)
{ x = 20;*Y= 3o;
)

3.

main ()

{ int i = abc(100) *= l-0;
printf("%d",i)

)
abc (int n)
{ return (n/l-0);
]

4.

main ()

{ abc (100,200)

]
abc (int. n)
I nrinFf /\9rll n.\-- ,'-,;
i

5.

mar.n ()

i int i = 5, j =
abc(i,j);
nrinF€/\\i = 9.1y!rlru!\ r -
nrintf (\r\n i -\ r.^ ,

]
:]-rn/int- i int- i
i i = i+j;

; - i_-i.
) - L Jl

i = i-j;
)

10;

/ i\
%d' ,

)

j);

1.

L.

A

B. Programming Exercises

Write a function to calculate the roots of a quadratic equation

Write a function that takes tn'o integer parameters and returns the sum of all
integers between them.

Write a function power which accepts two integers x and y and returns x'r.

Write a function ctoi which ac(cpts a character and returns its ruteger
equivalent if it is a digit and returns '1 otherwise.

Example: ctoi(ch) should return integer 5 if ch has value '5'.

Write a recursive function to calculate and return the sun of digits of a number.
Example: Sum of digits of 397= 19.

Modify the above function such that the sutn of dlgits is a single digit number'

Examp)e: Sum of digits of 397 = 1

Write a recursive program to find the multiplication of two integers'

5.

Principlcs of Programming and Algorithm I >22 Functions

C. Review Questions

1. Definc a function and illustrates how it works.

2. What are the advantages of using functions?

3. What are library and user defined functions?

4. What do you rtrean by a function prototype?

5. State the diflercnt palts of a functiorr? Explain the function header.

6. What are formal and actual paramctels:?

7. illustrate witii an example fnnction declaration, function definition and
tunction call.

B. What is a local variable? Explain using examples.

9. Explain call by value and call by reference.

10. What is recursion? Explain with examples.

11. What rs the neaning of the following declarations?

a. int f(float, char);

b. void g(int, int , int);

c. double h(void);

STORAGE CLASSES

MEANING OF TERMS

Every variable in a program has some menory associated with it. Memory tor'
variables is allocated and released at different points in the progratll.

'fhe scope of a variable can be defined as the regiou or part of the program rn
which the variable is visible or valid. Visible here also lneans accessible.

When speaking about scope, the term variable refers to all C data types: Simple
variables, arrays, structures, pointers, symbolic constants, etc.

Scope also affects a variables extent or lifetime.

Extent: This is the period of time during which memory is associated wittr a
variable. In other words, a variable lifetime is how long the variable persists rn
memory.

Storage class refers to the manner in which menory is allocated by the compiler to
variables.

The storage class determines the scope and the lifetime of a variable.
Storage closses ore:
o auto
. static
r extern
. register

We have written a number of programs so f61 and have not used any of these
classes as yet.

The reason that the previous programs compile and mn is that if no class is
tnentioned, a default storage class will be assigned dependinq upon the contert in
which the variable is used.

9 >1

Principles of Programming And Algorithm 9 > 2 Storage C/asses

m scoPE
A demonstration of Scope

Examples

fft
/' Illustration variable scope '/

#incfude<stdio. h>
main ()

{ inc n = 5;
void display(void); ,/* function prototype -/
Pr inLf (" \n e"d" , n) ;

dispiay () ;

i
void display (vord)
i

printf ("%d\n", n) ;

i

Output

Compiler error: The variable n is defined within main and is visible only rn
function main. It cannot be accessed in the function display.

We will now make a small modification to the above program.
2.

l-r-l
tUl!

- /' Illustration variable scope */

#i-nclude<stdio.h>
int n = 5;
mai-n ()

t void display (void); / * function prototype */
printf (" \n %d" , n) ;

display ();
)

void display (voj-d)
t

pr rntf (" \n%d" , n) ;

i

Output

We have made a tninor modification in the first program by rnoving the delinjtion
of n outside main (). By doinq so, we have changecl its scope.

In Program l, n is a local variable i.e. its scope is limited to the block where it is
delined.

In Program 2, n is a global (external) variable and its scope is the entirc program.

9.2.1 Block Scope and Ftle Scope
The scope of an identifier falls under two ccttegories

1. Block scope (or local scope)

2. File scope

Block Scope: An identifier s .rrd to have local or block scope if it is defined within
a Iunction or a block. It can bt used only within that function or block. It cannot be
used outside. Such identifiers are called local identifiers.

FiIe Scope: If an iclentifier is defined outside a function it can be used in any
function in the program i.e. it has a visibility over the entire file. Such identifiers are
called global identifiers.

Examples

/*Loca1 and file scope */
#incLude<stdio. h>
inc n = 2O;
main ()

{ intm=10,.
disp_values ())

void disp_values ()

{ printf ("td Bd", m, n) ;
r

In this program, variable n has file scope whereas m has block scope. n can be
usecl tn .rn} function in tlre file whereas m can only be used in function main because
il" lras been delrned in marn.

Advantages d Blor;h*op
l. Data integrity is preserved since a function cannot access the data of another.

2. only the r!{:L,r:;sdr} data can be passed to a function thus protecting the
remainrnE data.

2'Anyfunctroncanmodifyglobaldata,Hencedatacannotbeprotected

m sroRAGE cLASSES
The storage c/oss of a variable determines

_ Principles of Programming And Algorithm 9 Y 4 Storage Classes

Advantages of File ScoPe

1. Il sorne common data is neecled by all functions, passing it as parameters will

not be feasible' Making it global will be much easier'

2. Any changes made to the global data by a function can be seen and used by

other functions.

Disadvantages of File ScoPe

1. If too many variables are made global, they will remain in memory till program

execution rs over. Thus, memory will remain allocated even when they are noi

being used.

i. where it is stored,

ii. i.ts default initial value,

iii. scope of the variable,

iv. lifetime of the variable,

We shall now study the four storage classes

9.3.1 Automatic Storsge Class

This is the default storage class of variables that are declared within a function' AII

the variables that we have studied in previous chaptels belong to this class'

In order to explicitly declare a variable which belongs to this class, the ke1'word

auto is used.

Example:

aut.o inL i ;

This variable comes into existence only when the function (where it is defined) is

called and ceases to exist after the function is exited; hence termed automatic

Features

1,. Storage - Memory

2.scope.Localtotheblockwhereitisdefined.(Blockscope)
3. Lifetime - lt exists as long as control remains in the block where it is defined'

4. Default initial value - Garbage'

Principles of Prograntming And Algorithm 9 > 5 Storage C/asses

t.-l: /'Illustrate automatic variables./
#include<stdio " h>
main ()

1. auto int i = 10 ;

auto int t = 20;
printf ("%d\n", i) ;

i
prrnt.f ("%d\n",i);

i

Output
2C

10

In this program, the two variables i are different variables sincc they arc clefinecl irr
cirllerent blocks.

9.3.2 Extern Storage Closs

Varlables belongincJ to this ciass are also called as global variables or externtrl
variables. They are declared outside all functions and are accessible to eili thcr
lunctrons in that source code file.

The vanable n is a global variable, n is declared outside main()which mtrkes it
accessible to all the functions in that file.

In some cases however, the progran code may extend over two or lrore separate
liles. In such a case, special handling is required for external variables.

0rc of extcrn keyword

if tltet {utrclr{)it uses an external variable, it is a qood progranming practice to
<leclare it arlajn withiu tire function using the extern ke1.word.

Synicx :

^-.F^-- l-r -exrern oaia ..':'J-;r.t v€.r ;

i"xonrplc:

Prt;'grtiru ? in :;trt-ti+i.l 9.i with changes will now be:

u

Principles of anming And

il lt ,

/' Illustrates external variables '/
inc-lude<stdio . h>

intn=5 i

maln ()

i
extern int n;

void disPlaY (void) ;

Printf (" \n e"d" , n) ;

displaY();)

.roid drsplay (void)
{

extern int n
princf ("\n%d",n) ;

/ * def inition *,i

/ * dec larat i-on '

..r* declaration *r

Note:

i. The declaratron within the function indicates that the function uses an external

variable, which is defined elsewhere'

ii. If both these functions are in the same source code file, the declarations are not

required.

iii. If the variable n is to be used in
the declaration using the extern

functions written in separate source code files,

keyword is required.

Features

L Storage - MemorY

2. Scope - File scope

3. Lifetime - It exists as long as the program which uses the variable is running'

It retains its value between functions'

4. Default - Initial value zero

lJses of global variables

i. use of global variable simplifies communication i.e' they need not be passed to

functions, (thereby making argument lists shorter) and any function can use

them whenever required.

ii. Symbolic constants are often declared globally'

Principles of Programming And Algorithm 9 > 7 Storage C/asses

Disadvantages

i. By using external variables, the principles of modular programming i.e. data
rsolation is violated.

ii. Even when not required, external variables persist in memory.

iii. Variables can be changed in unexpected and inadvertent ways and it is difficuit
to keep track of the changes made thereby leading to problems.

9.3.3 Static Storage Clsss

Local variables are autornatic by default, which means that every time the function
in which they are declared is called, they are created and destroyed when the
function ends. They do not retain their value between functions calls.

However, in many cases it is required that a variable retains its value between
function calls. This is possible if the variable is declared belonging to the statrc
storage class.

Synlox:

st.at.ic data-type variable ;

Example:

st.at.ic int x;
stacic Iong factorial;

Types of static variables

1. Local static variables

These variables have block or function scope and they retain their value
between calls to the function.

2. Global static variables

They are global to the file in which they are defined. Unlike an ordintrry
external variable, which is visible to all functions in the file and functions irr
other files, a static external variable is visible only to functions in its own frle.

Pincides of Programming And Algorithm 9 > I Storage Ctgggrg

--l
Lii-''o' /' Illustration of local static variable and automatic variable '/
#incl,ude<stdio. h>

main (
)

iin--n:
void incremenL (void) ;

for (n=1 ; n<=5 ; n++)

inc::ement l) ;

I

void rncr:ement (void)
{

intlcount=0; /*automaticvariablex/
static int scounL = 0 ; /* sLatic variable */
Lcount++;
sccunt++ /'

pr-intf ("\n lcount = %d scount = %d", lcount-, scounL) ;

Output
lcount=lscount=1
lcount=1 scounL=2
lcount=1 scount=3
lcounL=lscount=4
lcount = l- scount = 5

The result shows that every time function increment is called lcor,rnt is created and
initialized to 0 whereas scount is initialized only once and its value persists between
function calls.

Features

1. Storacle - Memory

2 Scope - Block or file scope depending upon where it rs dcclared.

3. I-ifetime - Persists between function calls if scope is block scope.

4. Default - Initial value zero.

9.3.4 Register Storage Class

The register key'word is used to te1l the conpiler to store the variable in a CPU
regisler lathel than in main memory. The register variables have similar features as

the automatic storage class except for the storagc location.

li.r

Principles of Programming And Algorithm 9 D 9 Storage Classes

6dvontogcs of rcgister varioblcs

The CpU has its own limited storage locations, which it uses for actual clata

operations. These locations are called registers. To manipulate data and pelfortn

operations, the CPU moves data back and forth between the memory and registers'

which takes a finite amount of time'
' Thus, if a particular variable is kept in the register itself, the CPU can access rt

faster. Hence, variables, which are heavily used, may be declared of this type so that

execution is faster.

Synlox:
raaicior dAt-a i\/ne rrariable;revrrus! uqes-uJyv

ExampLe:

regist-er int i;
register char ch,'

Limitations

i. There are only a limlted number of registers in the CPU. So, a register may not

be available for the variable. In such a case, the variable is treated as an

ordinary automatic variable'

ii. Most compilers allow this storage class to be used only with integer data type.

(int or char)

iii. The unary & operator (address of) cannot be used with these variables either

explicitlY or imPlicitlY.

iv. It cannot be used with either static or external storage classes.

v. It cannot be used for structures, arrays or unions'

Features

1. Storage - CPU registers

2. Scope - Block scope

3. Lifetime - Exists as Iong as control is within the block where it is defined

4. Default initial - value-garbage

Principles of Programming And Algorithm 9 >10 Storage C/asses

9.3 .5 Summory

,F.. x..9..[. s..i. $. 9..t.

The following table summarizes the storage classes, scope and initializations.

Storage
Class Variable is declared Visibility Remarks

Static
Outside a function Anywhere within the

file
Are initialized only once,Values I

retained through function calls, i

default initial value is zero.
iInside a function block Function/Block Scope

Extern Outside a function Anywhere within the
file

It they are to be used in multiple
files, they have lo be declared in
each function using the exlern
keyword. Initialization can be
done only once-outside the
functions.

Register lnside a function/block Function/block scope

limited numbei of registers,
restriction on the type of
variables, cannot use pointers
for register variables, no default
value

Aulo Inside a functiodblock
Function / block
scope i.e. local to the
function/block

Variable is initialized each time
the function / block is entered, no
default value. Does not exist
outside function block where
declared.

l.
main()

{ inc i;
i = abc();
printf ("td....";i);
i = abc();
printf ("9d", i) ;

)

static int abc ()

I irt i - 1
I -.re

recurn i++;
)

Pinciples of Pragemming And Algorithm 9 > 1l Sto/a,ge C/asses

2.

exLern int i;
main ()

{ printf ("Bd", i) ;

I

3.

static int i = 100;
main ()

t staLic int i = 200;
abcO;
nrinr€J\CA' i Ir -_,*/,.

i
abc()

i prinEf ("td. . ", i) ;

)

4.

/* File aa.c */
int a = l-00;
/* File bb.c *,/

#include "aa.co
extern int a;
main()

i print,f ("td", a) ;
i

B. Review Cluestlons

1. What do the following terms mean?

a. Scope

b. Extent

c. Storage class

2. What do you mean by block scope and file scope? Explain with examples.

3. What is meant by the storage class of a variable? Name the different storage
classes in C.

4. What is meant by local variables?

5. Distinguish between local and global variables.

Principles of Programming And Algorithm 9 D 12 Storage Classes

6. What are static variables? What are the two types of static variables?

7. Differentiate between automatic and static storage classes.

8. What is the purpcse of the extern keyword?

9. What values does an un-initialized global variable contain?

10. What do you understand by block scope of a variable? How does nested blocks
affect its accessibility?

f,. What are the advantages and limitations of the register storage class?

12. When is the register storage ctrass most useful?

13. Discuss the different storage classes in C.

1,4. Write two differences between auto and static variables.

ffi

Suggestive Readings

- ADAMS, G.B. III, AGRAWAL, D.P., And SIEGEL, H.J.: ‘‘ A Survey And Comparison
Of Faulttolerant Multistage Interconnection Networks,’’ Computer, Vol. 20, Pp. 14–27,
June 1987.

- ADAMS, K., And AGESEN, O.: ‘‘ A Comparison Of Software And Hardware Technqiues
For X86 Virtualization,’’ Proc. 12th Int’l Conf. On Arc H. Support For Prog. Lang. And
Operating Systems, ACM, Pp. 2–13, 2006.

- AGESEN, O., MATTSON, J., RUGINA, R., And SHELDON, J.: ‘‘Software Techniques
For Av Oiding Hardware Virtualization Exits,’’ Proc. USENIX Ann. Tech. Conf.,
USENIX, 2012.

- AHMAD, I.: ‘‘Gigantic Clusters: Where Are They And What Are They Doing?’’ IEEE
Concurrency, Vol. 8, Pp. 83–85, April-June 2000.

- AHN, B.-S., SOHN, S.-H., KIM, S.-Y., CHA, G.-I., BAEK, Y.-C., JUNG, S.-I., And KIM,
M.-J.: ‘‘Implementation And Evaluation Of EXT3NS Multimedia File System,’’ Proc.
12th Ann. Int’l Conf. On Multimedia, ACM, Pp. 588–595, 2004.

- ALBATH, J., THAKUR, M., And MADRIA, S.: ‘‘Energy Constraint Clustering
Algorithms For Wireless Sensor Networks,’’ J. Ad Hoc Networks, Vol. 11, Pp. 2512–2525,
Nov. 2013.

- AMSDEN, Z., ARAI, D., HECHT, D., HOLLER, A., And SUBRAHMANYAM, P.:
‘‘VMI: An Interface For Paravirtualization,’’ Proc. 2006 Linux Symp., 2006.
ANDERSON, D.: SATA Storage Technology: Serial ATA, Mindshare, 2007.

- ANDERSON, R.: Security Engineering, 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2008.
- ANDERSON, T.E.: ‘‘The Performance Of Spin Lock Alternatives For Shared-Memory

Multiprocessors,’’ IEEE Trans. On Parallel And Distr. Systems, Vol. 1, Pp. 6–16, Jan.
1990.

- ANDERSON, T.E., BERSHAD, B.N., LAZOWSKA, E.D., And LEVY, H.M.:
‘‘Scheduler Activations: Effective Kernel Support For The User-Level Management Of
Parallelism,’’ Acmtrans. On Computer Systems, Vol. 10, Pp. 53–79, Feb. 1992.

- ANDREWS, G.R.: Concurrent Programming—Principles And Practice, Redwood City,
CA: Benjamin/Cummings, 1991.

- ANDREWS, G.R., And SCHNEIDER, F.B.: ‘‘Concepts And Notations For Concurrent
Programming,’’ Computing Surveys, Vol. 15, Pp. 3–43, March 1983.

- APPUSWAMY,R., VAN MOOLENBROEK, D.C., And TANENBAUM, A.S.: ‘‘Flexible,
Modular File Volume Virtualization In Loris,’’ Proc. 27th Symp. On Mass Storage
Systems And Tech., IEEE, Pp. 1–14, 2011.

- ARNAB, A., And HUTCHISON, A.: ‘‘Piracy And Content Protection In The Broadband
Age,’’ Proc. S. African Telecomm. Netw. And Appl. Conf, 2006.

- ARON, M., And DRUSCHEL, P.: ‘‘Soft Timers: Efficient Microsecond Software Timer
Support For Network Processing,’’ Proc. 17th Symp. On Operating Systems Principles,
ACM, Pp. 223–246, 1999.

- ARPACI-DUSSEAU, R. And ARPACI-DUSSEAU, A.: Operating Systems: Three Easy
Pieces, Madison, WI: Arpacci-Dusseau, 2013.

- BRATUS, S., LOCASTO, M.E., PATTERSON, M., SASSAMAN, L., SHUBINA, A.:
‘‘From Buffer Overflows To Weird Machines And Theory Of Computation,’’ ;Login:,
USENIX, Pp. 11–21, December 2011.

- BRINCH HANSEN, P.: ‘‘The Programming Language Concurrent Pascal,’’ IEEE Trans.
On Software Engineering, Vol. SE-1, Pp. 199–207, June 1975.

- BROOKS, F.P., Jr.: ‘‘No Silver Bullet—Essence And Accident In Software Engineering,’’
Computer, Vol. 20, Pp. 10–19, April 1987.

- BROOKS, F.P., Jr.: The Mythical Man-Month: Essays On Software Engineering, 20th
Anniversary Edition, Boston: Addison-Wesley, 1995.

- BRUSCHI, D., MARTIGNONI, L., And MONGA, M.: ‘‘Code Normalization For Self-
Mutating Malware,’’ IEEE Security And Privacy, Vol. 5, Pp. 46–54, March/April 2007.

- BUGNION, E., DEVINE, S., GOVIL, K., And ROSENBLUM, M.: ‘‘Disco: Running
Commodity Operating Systems On Scalable Multiprocessors,’’ ACM Trans. On Computer
Systems, Vol. 15, Pp. 412–447, Nov. 1997.

- BUGNION, E., DEVINE, S., ROSENBLUM, M., SUGERMAN, J., And WANG, E.:
‘‘Bringing Virtualization To The X86 Architecture With The Original Vmware
Workstation,’’ ACM Tr Ans. On Computer Systems, Vol. 30, Number 4, Pp.12:1–12:51,
Nov. 2012.

- BULPIN, J.R., And PRATT, I.A.: ‘‘Hyperthreading-Aware Process Scheduling
Heuristics,’’ Proc. USENIX Ann. Tech. Conf., USENIX, Pp. 399–403, 2005.

- CAI, J., And STRAZDINS, P.E.: ‘‘ An Accurate Prefetch Technique For Dynamic Paging
Behaviour For Software Distributed Shared Memory,’’ Proc. 41st Int’l Conf. On Parallel
Processing, IEEE., Pp. 209–218, 2012.

- CAI, Y., And CHAN, W.K.: ‘‘Magicfuzzer: Scalable Deadlock Detection For Large-Scale
Applications,’’ Proc. 2012 Int’l Conf. On Software Engineering, IEEE, Pp. 606–616, 2012.

- CAMPISI, P.: Security And Privacy In Biometrics, New York: Springer, 2013.
- CARPENTER, M., LISTON, T., And SKOUDIS, E.: ‘‘Hiding Virtualization From

Attackers And Malware,’’ IEEE Security And Privacy, Vol. 5, Pp. 62–65, May/June 2007.
- CARR, R.W., And HENNESSY, J.L.: ‘‘Wsclock—A Simple And Effective Algorithm For

Virtual Memory Management,’’ Proc. Eighth Symp. On Operating Systems Principles,
ACM, Pp. 87–95, 1981.

- CARRIERO, N., And GELERNTER, D.: ‘‘The S/Net’s Linda Kernel,’’ ACM Trans. On
Computer Systems, Vol. 4, Pp. 110–129, May 1986.

- CARRIERO, N., And GELERNTER, D.: ‘‘Linda In Context,’’ Commun. Of The ACM,
Vol. 32, Pp. 444–458, April 1989.

- CERF, C., And NAV ASKY, V.: The Experts Speak, New York: Random House, 1984.
- CHEN, M.-S., YANG, B.-Y., And CHENG, C.-M.: ‘‘Raidq: A Software-Friendly,

Multipleparity RAID,’’ Proc. Fifth Workshop On Hot Topics In File And Storage Systems,
USENIX, 2013.

	9c940210a83487ba20f1ade5a6baae8abb2b131cf4094bd5a97312f9814cec16.pdf
	3090285c1e0fd5a4126550f232a648bbb06ce2aa944683a2dece9aa825d4b814.pdf
	Microsoft Word - Syllabus PPA
	9c940210a83487ba20f1ade5a6baae8abb2b131cf4094bd5a97312f9814cec16.pdf
	Microsoft Word - Ref PPA

