SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Principles of Programming & Algorithm
Semester-I
Author- Poonam Ponde

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Semester 1
Principles of Programming & Algorithms
Learning Objectives
- Elucidate the basic architecture and functionalities of a computer
- Apply programming constructs of C language to solve the real-world problems
- Explore user-defined data structures like arrays, structures and pointers in implementing
solutions to problems
- Design and Develop Solutions to problems using structured programming constructs such
as functions and procedures

UNIT-I

Introduction to ,,C* Language History, Structures of _Programming, Function as building blocks.
Language Fundamentals Character set, C Tokens, Keywords, Identifiers, Variables, Constant,
Data Types, Comments.

UNIT-1I

Operators Types of operators, Precedence and Associativity, Expression, Statement and types of
statements Build in Operators and function Console based I/O and related built in I/O function:
printf(), scanf(), getch(), getchar(), putchar(); Concept of header files, Preprocessor directives:
#include, #define. Control structures Decision making structures.

UNIT-III Introduction to problem solving Concept: problem solving, Problem solving techniques
(Trail & Error, Brain Stroming, Divide & Conquer) Steps in problem solving (Define Problem,
Analyze Problem, Explore Solution) Algorithms and Flowcharts (Definitions, Symbols),
Characteristics of an algorithm Conditionals in pseudo-code, Loops in pseudo code Time
complexity: Big-Oh notation, efficiency Simple Examples: Algorithms and flowcharts (Real Life
Examples)

UNIT-IV

Simple Arithmetic Problems Addition / Multiplication of integers, Determining if a number is +ve
/ -ve / even / odd, Maximum of 2 numbers, 3 numbers, Sum of first n numbers, given n numbers,
Integer division, Digit reversing, Table generation for n, a n C b, Factorial, sine series, cosine
series, r , Pascal Triangle, Prime number, Factors of a number, Other problems such as Perfect
number, GCD numbers etc (Write algorithms and draw flowchart), Swapping

UNIT-V

Functions Basic types of function, Declaration and definition, Function call, Types of function,
Parameter passing, Call by value, Call by reference, Scope of variable, Storage classes, Recursion.

References

- Computer fundamentals and programming in ¢, “Reema Thareja”, Oxford University,
Second edition, 2017.

- E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill.

- Brian W. Kernighan and Dennis M. Ritchie, The ‘C’ Programming Language, Prentice
Hall of India.

- elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html

- https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more
clarity in understanding the topics and verities of problem solving methods.

CONTENTS

) Total Pages
1 Introdaction To C Language 12
1.7 INtrodUCHION 10 ‘C’ LANGUAGEceeeeeveeeeeeeeeeeeeeeeteeteeeieeeeeeeeeeeeeeeeee s eeseasesaesaeesann 1-1
1.2 ADPHCAHON ATEESooeerriectsieeireeeteesete e e e e eesasests et eeeeee e e eae st eaeaesssenens 1-5
1.3 FRAIUIBS Of “C'.....coooeeeieeese ettt e st e e tane et s eeseneneeassnennen 1-5
1.4 Program DevelOpmMENt CYCIEeoecueeeeeeeeeeeeeeeeeeeeeeeeeteeeereeeeeeeereaveeeeeeeeeesen 1-6
1.5 SHUCHUIE OF @ ‘C PrOGraiMi.......c.ocoveeeeeeeeeeeeeeeveieie e eeeeeeeeeeeeveee e eev e s enaeenaesesar e 1-8
y 4 Langaage Fandamentalis 12
2.1 C7CRATACIOT SOttt ee et ver et eeesesareseseesnanes 2-1
2.2 G TOKBNS......ooeeieeeeeeettstre ettt eaeeeats s eeseeserae e s s ses et e rensesenennsenen
2.3 Identifiers and Keywords
2.4 CONSIANES.ccooieeiriretereeies e sttt et e eee et e stsstssta e sesereseneeeasneesesenesasenssseenranen
2.5 Variables............moveeeeeiievvevrnnn et b e e e et r e e e st e e e aeaneeearennnes
2.6 Data Declarations and Definitions
3 Operators
3.1 OPErators and EXDIOSSIONS.couveveeeeueeeeeereeeeesereeateeeeeeaeeeeresetsesresaeeresesassassies 3-1
B2 SABIMENIS. ...ttt ee e et een e et es e e ne e rennen 3-11
4 Bailt-In Operators and Fanction 22
AT IDIFOQUCHON ...ttt ess et st e e et stnats et e e senesesanenaeaenas 4-1
4.2 Character Input and OUIDUL...........c.ceuveeeeeeeeeeeeeeee et eeee e se e eseeeeneanens 4-1
4.3 String Input and Output [GEIS() & PUIS() [...eeeeeeeeeeeeeeeeeeeeeee e eeesereesesenann 4-3
4.4 General Output / formatted OUIDUL (DNooeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeseesnanns 4-4
4.5 FOrmatted INDUL (SCANK)......o.ce oottt sere e s e e et reresesenesaeeeaenenn 4-7
4.6 CONCEPE OF HEAUET FFHlESoovveeeeeeeeeeeeeeeeeeeeeeeeresteee e eaer e aeseseeeeesenenteaneas 4-8
4.7 WRAL IS @ PrEPIOCESSOI?.....c..eeeveeeeeeteeeeteeseeeeeaeeestnestsaseseesamessesseesaeeeeeeemsssessenes 4-9
4.8 ProproCeSSOr DIfECHVES.............cvceeeireieirrireetesteeeceeeeeeevssereeeeeeeeeer v reseeeesaneaeaseen 4-9
5 Control Stractares 32
5.1 INrodUCHONcoooieeeeeeeeseeeeeeee e e e e 5-1
5.2 Selection / Decision making StAIEMENISceeweeeeeeeeeeeeeemeeeeeeeeeraeeeereesenseneesen 5-1
5.3 lterative Statements (LOOP CONrO! SHUCHIIE)ooeeeeeeeeereeeeeeeeeeeeeeeaeraeranen 5-11
5.4 TREFOF LOOP.......oouoeeieeieeteeeeeeese ettt et etv e eeraeveeenannnes 5-18
5.5 JUMD SEAIEMENIS........oooeeeeeiieeeeeseeeeie ettt eeeee et eeen et e eeeeeeeneeeeneaeeneeeenens 5-24
6 Introdaction to Problem Solving 20
6.1 INIFOGUCHON ...ttt ee vt e s e st s e e e aeeesereneees 6-1
6.2 Problem SONING TECHANIQUESc.ocoeoueeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeee e eveeeen e 6-2
6.3 S1EPS in Problem SOIVING............comveemiiieeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeetreeaeeeeveereeananes 6-5
6.4 AlGorithms and FIOWCHAITS............coooooiuiaeeeeeeeeeeeeeeeeeeeee e eeere e 6-7
6.5 Characleristics Of an AIGOTIthMeeueeeeueeueeeeeeeeeeeseeeeeeeeeeeeeeeeeeveeaeaeeseerenann 6-9
6.6 Conditionals in PSEUAOCOME..............oceeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeseraeerereeeeens e 6-10
6.7 LOOPS iN PSQUAOCOME ...ttt a e eaen s 6-10
6.8 TiME COMPIEXILY ...ttt e aes e ev et reaeaeee e s aenans 6-13
6.9 Simple Examples: AIQOrIthMS.... ..o eva 6-17
7 Simple Arithmetic Problems 16
7.1 Program for Addition Of TWO IN@QEISccoveeeeeeeeeeeeeaieeeeeerereeeeeeeereeeseeeeenans 7-1

Principles of Programming &.. ole |!052l

7.2 Program for Multiplication of TWO INt@GerS............ccovmminiinniini s 72

7.3 Program for Division of TWO INTEGEIS.........cceccoviriiimiimiiiiiit s 7-2
7.4 Program for determining NUMDEr IS +V€ OF -VE.........c....mmmriiciiiiiiniinncnes 7-3
7.5 Program for determining Number is Odd Or EVEN...........cocoiiiiiiiiiiinniccis 7-3
7.6 Program for Finding Maximum Of TWO NUMDEYS..........cocoormmmmieimnsinnc s 7-4
7.7 Program for Finding Maximum of Three NUIMDErS ... 7-5
7.8 Program of Sum of first N NUMDEISccocooimiiiniiii 7-6
7.9 Program for Reversing Integer NUMDEX ...t 7-6
7.10 Program for Table Generation of N NUMDETc.cccovimmmiiimiisiniie 7-7
711 Program for FACIONalcooiovrivieiiiiiiiiieicni ettt 7-8
7.12 Program for Finding Sine of a Number........... e e it ea i —rar e ra et sa e srnnnnes 7-8
7.13 Program for Finding Cosine of @ NUIMBDOT............cccoriiiiimniicne 7-9
7.14 Program for COMDINAHONSc.cveeeeieisacsmesescamicisctst sttt s 7-9
7.15 Program for PErMULAHONc...ocucverimniiniic it nt i 7-10
7.16 Program for Pascal Trangleccoiniiiniiincii 7-11

7.17 Program for Finding Prime NUMDETccoovimimiiininnir 7-12
7.18 Program to Find Factors of ANUMDENc.ccoooiiiimiiii 7-12
7.19 Program for Greatest Common Divisor between TWo NOSccooevirniinnnins 7-18
7.20 Program for Swapping of Two INIEGErS...........cccooiiiimmmmmmiii e 7-14
Fanctions 22

8.7 INTOQUCHON ..ot eetie et es ettt e e e s e e n st san s e s et 8-1
8.2 WHRALIS @ FUNCHON? oottt et e st 8-1

8.3

84

8.5 Library and User defined FUNCHONScovoearircimicinintiiricie i 8-3
8.6 Function Declaration and Definifionccovieiemineiiininieictieeeir s 8-5
8.7 WIHNG @ FUNCHOMc.comuiaieiateeiiieeeeeietic et 8-6
8.8 Calling a Functionc.ccccccueeeniees et at e et ———atreetaaa e et rn e anean st aa s 8-8
8.9 Passing Arguments 10 @ FUNCHON ..o 8-10
8.10 Functions with Variable ArQUMEN!S.............coeeuee et 8-12
8.11 Command Line ArQUIMEIILSceeiueeieeimsiietesie sttt ns st 8-13
812 ROCUISION ..o ee e ieeeeeeeeeeeeee e eeaeaete et e e et e e e e e e an e asan e e ae s st r s e e e e ne s s baeaeesseaanses 8-15
8.13 Function Returning @ POINIETcooeeveieiiminieccie it e 8-19
Storage classes 12

9.1 MEANING Of TOIMScuereeeeeee ettt es ettt 9-1
.2 SCOPE.....sieteeeeeeie ettt b bR s 9-2
9.3 SIOrAGE ClASSOS. e eeiueeeitiieititeeeteiesess sttt 9-4

Principles of Programming & Algorithm 2. E052|

INTRODUCTION TO
C LANGUAGE

1.1

Introduction to ‘C’ Language

1.1.1 History

The development of C language was a result of the evolution of several languages,
which can be called ‘the ancestors of C'. These were Algol 60, CPL, BCPL and B.

In the 1960s many computer languages, each for a specific purpose, were
developed, e.g COBOL and FORTRAN. The need was' felt for a general purpose
language that could suit a variety of applications. An international committee set for
this purpose, designed Algol 60, which eventually led to the development of C.

1.

ii.

iii.

v.

Algol 60 was a modular and structured language but it did not succeed because
it was found to be too abstract and too general.

The Combined Programming Language (CPL) developed at Cambridge
University and University of London in 1963 was a successor of Algol €0.

However it was hard to learn and difficult to implement.

The Basic Combined Programming Language (BCPL) was very close to CPL
and developed by Martin Richards at Cambridge University in 1967. BCPL was
too less powerful and too specific and hence it failed.

The father of C language was the B language developed by Ken Thompson of
Bell Laboratories in 1970. It was designed for an early implementation of

UNIX. However, it was machine dependent and a ‘type-less language’'. For
this reason, Dennis Ritchie began work on a new language as a successor 1o B.

The ‘C’ programming language by Dennis Ritchie came into existence in 1972
at Bell Laboratories. The early development and use of C was closely linked
with UNIX for which it was developed. For many years, the only reference

1»1

Principles of Programming and Algorithm 1>»2 Introduction To C Language

available on C was the published informal description in Kernighan and
Ritchie’s book.

In 1983, the American National Standards Institute {ANSI) established a
committee to provide a formal comprehensive definition of ‘C'. This ANSI standard
known as “ANSI C" was completed in 1988.

Development of ‘C’
Summary

Algol 60

(By an International Committee, 1960)

{
CPL

(At Cambridge and L.ondon University, 1963)

I(—

BCPL
(Martin Richards at Cambridge University, 1967)

I(—

{(Ken Thompson at Bell Laboratories, 1970)

I(—

(Dennis Ritchie, Bell Labs, 1972)
1.1.2 Computer Languages

Computer languages have evolved over the years from the earliest machine
language to the recent natural languages.

Low Level Languages

These languages were the earliest languages developed. Under this category, we
have Machine and Assembly languages.

Features of Low Level Languages

1. These languages are greatly hardware dependent i.e. the code had to be
written for specific hardware.

2. Programs written on one machine will not run on another (Non-portable).

3. Programmers are required to have knowledge about the hardware as well.

* Machine Language

Since the computer is made up of electronic circuits, they can only understand
binary logic (0's and 1's). Hence in order to communicate with the computer, the user

Principles of Programming and Algorithm 1 >»3 Introduction To C Language

has to give instructions in term of 0's and 1's. This was called machine language and
il was one of the earliest computer languages (1940's).

Advantage

1. Since the computer circuits can directly interpret 0 and 1, execution of
programs is very fast.

Disadvantages

1 Writing programs in binary is very difficult.

2 It is very easy to make errors during writing or data entry.

3. Debugging is very difficult.

4 There is no distinction between the instruction and operands or data.

5 It is difficult to understand the program logic by looking at the program.
® Symbolic/ Assembly Language

These were developed in the 1950's to remove the disadvantage of Machine
Language. In these languages, small English like words, called mnemonics were
used for instructions (For example: ADD, SUB, etc) and hexadecimal codes were used
for data.

Example: 8085, 8086 languages.

Advantages
1. Writing of programs became easier.
2. Errors are minimized
3. Identification of errors is easy.
4. There is a distinction between instructions and data.
5. Programs can be easily understood.
Disadvantages
1. Because a computer does not understand symbolic language, it has to be

translated to machine language.

2. A special software called Assembler is needed to translate assembly code to
machine code.

3. Execution becomes slower.

High Level Languages

High-Level languages were developed to
1. Improve programming efficiency.

2. Shift focus from the computer to problem solving.

Principles of Programming and Algorithm 1

>4

Introduction To C Language

3.

Develop portable applications.

Features of High-Level languages

1.
2
3.
4

5.

Example: Pascal, FORTRAN, COBOL, BASIC, etc.

Use of English-like words for instructions.

Support to multiple data-types like characters, integers, real-numbers etc.

Hardware independent instruction set. (Portability)

Programs have to be converted from high-level languages to machine -

languages.

Conversion is done by special Software (Compiler or Interpreter).

Compilers and Interpreters

Programs written in a high level language have to be converted into machine code
in order to be executed. The software which does this translation is called a Compiler
or Interpreter. Some high level languages use a compiler whereas some use an

interpreter.
Source - Object
mpiler/interpreter
code Compiler/interprete code
Difference between Compiler and Interpreter
No. Compiler ' interpreter
. . An interpreter takes a single instruction
A compiler takes the entire program and - .
1. \ of the program, converts it to object
generates the object code for the program. code and executes it
2. | Anintermediate object code file is created No intermediate file is created.
Once the object code is created, the | Every time a program is executcd,
3. | program need not be compiled everytime | conversion from high level to machine |
before execution code has to be performed.
A compiled program executes faster . . o
4, especially if the program contains loops An interpreter is slower than a compiler.
5 The compiler is not involved in the execution | An interpreter also executes the
* | of the program. instruction.
There is more memory requirement since .
6. object files are created. Memory requirements are less.
7 A list of errors is generated after the entire Ersrgiﬁo:rﬁ“erd::gzye? ngr e ve:y
" | program is checked. . P - -~ ebugging 18
easier. ‘
8. | PASCAL, C use compilers BASIC has an interpreter.

Principles of Programming and Algorithm 1»5 Introduction To C Language

1.1.3 Where C stands

The 'C’ programming languages is a very powerful and flexible language.

It provides the programmer a facility to write low—level programs as well as high-
level programs.

Thus, it is designed to have both-good programming efficiency and good machine
efficiency.

For these reasons, C is called a Middle Level Language. It permits machine

independent programs to be written as well as permits close interaction with the
hardware.

1.2 APPLICATION AREAS

'C' is a general purpose programming language and not designed for specific
application areas like COBOL (business applications) or FORTRAN (scientific and
engineering applications). ~

‘C' is well suited for business as well as scientific applications because it has
various features (rich set of operators, control structures, bit manipulation, etc.)
required for these applications.

However it is better suited and widely used for system software like operating
systems, compilers, interpreters, etc.

1.3 FEATURES OF ‘C’

In the current scenario there are several languages to choose from. Most are well
suited for a variety of tasks. However, there are several reasons why ‘C' is a popular
programming language.

1. Flexibility: ‘C' is a general-purpose language. It can be used for diverse
applications. The language itself places no constraints on the programmer.

2. Powerful: It provides a variety of data types, control-flow instructions for
structured programs and other built-in features.

3. Small Size: 'C' language provides no input/output facilities or file access.
These mechanisms are provided by functions. This helps in keeping the
language small. ‘C’' has only 32 keywords, which can be described in a small
space and learned quickly.

4. Modular Design: The ‘C"'code has to be written in functions, which can be
linked with or called in ¢ther programs or applications. C also allows user
defined functions to be stored in library files and linked to other programs.

5. Portability: A ‘C' Jrogram written for one computer system can be compiled
and run on another with little or no modification. The use of compiler directives

Principles of Programming and Algorithm 1>»6 Introduction To C Language

to the preprocessor makes it possible to write a single program that can be used
on different types of computers.

6. High level structured language features: This allows the programer to
concentrate on the logic flow of the code rather than worry about the hardware
instructions.

7. Low-level features: 'C' has a close relationship with the assembly language

making it easier to write assembly language code in a ‘C’ program.

8. Bit Engineering: 'C' provides bit manipulation operators, which are a great
advantage over other languages.

9. Use of Pointers: This provides for machine independent address arithmetic.

10. Efficiency: A program written in ‘C' has development efﬁciency as well as
machine efficient (i.e. faster to execute). ‘

The ‘C’ language, however, does have its limitations

1. It is not suitable for programming of numerical algorithms since it does not
provide suitable data structures.

2. ‘C" does not perform bound checking on arrays. This results in unpredictable
errors, which are difficult to locate.

3. The order of evaluation of function arguments is not specified by the language.

Example: Inthe function call, { {i,++i); it is not defined whether the
evaluation is left to right or right to left.

4. The order in which operators are evaluated is not specified in some cases.

Example In ali] = b [i + +], the value of ‘i’ could be incremented after the
assignment or it could be incremented after b [i} is fetched but beforc
assignment. The order of evaluation of operands of an operator is also not
specified. Example: Sum = (++a ,—~ - a). Here it is left to the compiler as to
which it evaluates first.

5. ‘C' is not a strongly typed language, which means that the compiler does not
strictly check and indicate errors for those statements that attempi a mismaich
of data types. This can cause unintentional errors, which are difficult to trace.

PROGRAM DEVELOPMENT CYCLE

The program development cycle is completed in four steps.

Creating the ‘C’ source code.
Compiling the source code.
Linking the compiled code.

W N

Running the executable file.

Principles of Programming and Algorithm 1

»7

Introduction To C Language

Standard and user
defined libraries

Written Pre-processed code l
‘C’ ; Source |5 """ - ! P . 1| Object [Executable
program Editor =18 .Fir(f;—)ro?e_s-s_Of :C_:_om_p_ller code *] Linker code
Creation Linking
Compilation
Figure 1.1
(Stant)
DOS UNIX
- Y Editor
Wiritten C
Code ———>——-{ Type the Program -
. ~
Combil ;Sodfce'f;) '
piler ,”(»tprogi'am 1 file.c file.c
N Compilers Source Code}---4"" \.. = =
> Edit Program
N Syntax
Yes_ €errors
No file.obj file.o
Libraries Linker
+object Jo--o_._ Link Program .
A programs \\\ ‘
o z,ﬁxi%g:bh« fileexe a.out
Correct \ 1 T “
L b Execute T

data

Yes

Logical

A

Errors?

Figure 1.2

Principles of Programming and Algorithm 1>8 Introduction To C Language

Creating the soarce code

Any editor or word processor can be used to create the source code. The file
containing the source code has to be a ‘text’ file with an extension .C most compilers
come with a built in editor. On UNIX, the editors like vi, emacs, etc. can be used.

Compiling the source code

The pre-processing is the first step in the compilation. The source code is given to
the pre—processor (Pre-processor is a system program that modifies a C program prior
to its compilation) which checks for special instructions (preprocessor directives) in
C program (line beginning with # provides an instruction to the preprocessor) and
performs other tasks to give the pre-processed code. The compiler then converts this

code to binary code (object code). On UNIX systems, the object code has an extension
.0 and on others it is .obj.

Several compilers have been developed for C. Some of the commonly used ones
are: Microsoft C, Borland C, Turbo C, GNU C. Programs can also be compiled on
UNIX by the CC compiler.

Linking the object code to create an execatable code

The object code of the program has to be linked with the object code of
precompiled routines from libraries. The linker creates a file with .exe extension.

Execating the program

Once the executable file is created, you can run it by typing its name at the DOS
command prompt or through the option provided by the compiler software. If the
desired results are not achieved, changes may have to be made to the source code.

When the source code is changed, it has to be recompiled and linked to create the
correct executable code.

1.5 STRUCTURE OF A ‘C’ PROGRAM

The basic building blocks of every C program are Functions.

A function is nothing but a module or a subprogram, which performs some task. It
may accept some information and may return a single output.

The function main

Every C program consists of one or more functions one of which is the function
called main. Program execution begins from this function and ends when the
instructions in the main function have been executed.

The basic structure of a ‘C’ program is as shown below:

Principles of Programming and Algorithm 1

»>7 Introduction To C Language

Standard and user
defined libraries

Written . Pre-processed code
‘C . ource |- "m0 j o 11| Object [7° Executable
program Editor —code :_th??_r???_s_s.?[' f_c_;?_r?P_"fti code 7| Linker code
Creation Linking
Compilation
Figure 1.1
Start
DOS UNIX
- Y Editor
Written C
Code ‘—>——1 Type the Program 1\
*\~ o
Compiler ;S:ou:g_g | filec file.c
A i —--"\ BogrEm
Compiters Source Code} -- <
> Edit Program N
\\
1 Syntax N\ :
Yes_ errors e 5
. Object 1\ . .
ograrﬁ file.obj file.o
Libraries A& -
+object }--—.._. Link Program 7\
programs Y =
1 [Executable) .
| code file.exe a.out
Correct \ e e-" o
S Execute

data

Yes Logical

N

Errors?

Figure 1.2

Principles of Programming and Algorithm 1>»8 Introduction To C Language

Creating the source code

Any editor or word processor can be used to create the source code. The file
containing the source code has to be a ‘text’ file with an extension .C most compilers
come with a built in editor. On UNIX, the editors like vi, emacs, etc. can be used.

Compiling the soarce code

The pre—processing is the first step in the compilation. The source code is given to
the pre—processor (Pre-processor is a system program that modifies a C program prior
to its compilation) which checks for special instructions (preprocessor directives) in
C program (line beginning with # provides an instruction to the preprocessor) and
performs other tasks to give the pre—processed code. The compiler then converts this
code to binary code (object code). On UNIX systems, the object code has an extension
.O and on others it is .obj.

Several compilers have been developed for C. Some of the commonly used ones
are: Microsoft C, Borland C, Turbo C, GNU C. Programs can also be compiled on
UNIX by the CC compiler.

Linking the object code to create an executable code

The object code of the program has to be linked with the object code of
precompiled routines from libraries. The linker creates a file with .exe extension.

Execating the program

Once the executable file is created, you can run it by typing its name at the DOS
command prompt or through the option provided by the compiler software. If the
desired results are not achieved, changes may have to be made to the source code.

When the source code is changed, it has to be recompiled and linked to create the
correct executable code.

1.5 STRUCTURE OF A ‘C’ PROGRAM

The basic building blocks of every C program are Functions.

A function is nothing but a module or a subprogram, which performs some task. It
may accept some information and may return a single output.

The function main

Every C program consists of one or more functions one of which is the function
called main. Program execution begins from this function and ends when the
instructions in the main function have been executed.

The basic structure of a ‘C' program is as shown below:

Principles of Programming and Algorithm 1>»9 Introduction To C Language

Documentation Section
Link Section
Definition Section
Global Declaration Section
Function Section
main()

{

Declaration Part
Executable Part

}

Subprogram Section

Function 1

Function 2 user
defined
functions

Function n

The documentation section consists of comment lines (enclosed in /* and */), which
are used to convey program information and other details.

Note: Comments can be put anywhere within the program.

The link section gives instructions to the compiler to link library files and other
user files.

The definition section defines all symbolic constants.

Some variable need to be used in all functions. Such variables are declared in the
global declaration section.

Every C program must have one main() function. It consists of local declaration
(information used only within main) and “C" statements. All statements end with a
semicolon.

The sub-program section contains all user-defined functions that are called in the
main function. The subprogram section may also appear before main() although it
1s normally placed immediately after main().

Principles of Programming and Algorithm 1>10 Introduction To C Language

1.5.1 Sample ‘C’ Program

To display thc following message € on the screen
Hello!
Welcome to C

I

== Program

1. /* My First C Program */
2.
3. #include<stdio.h>
4. main()
5. {
6. printf(“Hello! \nWelcome to c");
7. i
]
Output
Hello!
Welcome to C
Explanation
1. Line 1 is a ‘C' comment. A comment is used to give additional information

about the program. It has to be enclosed in /* and */. Comments are ignored by

compiler.

Comments can be written anywhere in the program and are used for

documentation. They cannot be written inside one another (nesting).

Example: /* First comment /* Second Comment */ */ is invalid.

2. Line 3 is the link section and it tells the compiler to include information about
the specified file, i.e. Standard Input - output functions. The #include directive
gives the program access to a library. A library is a collection of useful functions
and symbols that may be accessed by a program. The ANSI (American National
Standards Institute) standard for C requires that certain standard libraries be
provided for every ANSI C implementation. A C system may expand the
number of operations available by supplying additional libraries; an individual
programmer can also create libraries of functions. Each library has a standard

header file whose name ends with the symbols.

The #include directive causes the preprocessor to insert definitions from a

standard header file into a program before compilation.

The directive #include <stdio.h> /* printf, scanf definitions */ notifies the
preprocesor that some names used in the program (such as prinft scanf) are

found in the standard header file <stdio.h>.

Principles of Programming and Algorithm 1>11 Introduction To C Language

SJ'I

Line 4 is the beginning of the main() function. It is the only compulsory and
the most important function of any C program.

Line 5 and 7 are the opening and closing braces of main. These braces contain
the instructions to be executed (statements).

Line 6 is the only statement in the function. It is a call to another function
called printf, which is an output function. Its job is to display the provided
mformation on the screen. The definition of this function i1s 1n the standard
input output library stdio.h. Hence we have included that file in the program.

The sequence of characters enclosed in “ “ is called a string which is displayed
on the screen as it is.

\n is a special character (although it is composed of two characters) called the
newline character. This character advances the output to the next line.

printf does not supply a new line automatically. Hence multiple printf ()
statements are used. So, the following printf statements

printf (“*Welcome”) ;

printf (“to”);

printf (vCc”);
Will give the following output
Welcome to

C

We can introduce the new-line character in the string’at the appropriate position.
The printf statements will now look like. .

printf(" Welcome to \n C”):

This is analogous to writing
princf (“*Welcome to \n”):
printf (“C”);

Principles of Programming and Algorithm 1>»12 Introduction To C Language

L B

How can a comment be written in a 'C' program?

Can the user defined functions be written above main{()?
What is the purpose of the link section?

What will be printed by the following segments of 'C' code?
1. printf (“ Hello \n\n\n everyone");

ii. printf ("\n");

‘C' is middle level language. Comment.

What are the advantages of ‘C'?

LANGUAGE]
FUNDAMENTALS

2.1 ‘C’C CHARACTER SET

The C character set consists of upper and lowercase alphabets, digits, special
characters and white spaces. The alphabets and digits are together called the
alphanumeric characters.

1. Alphabets

ABC................. Z
abec........... Z
2. Digits
0123456789
3. Special characters
,.;:#’“!:~<>{}()—_$%&’\"’+[]/\
4. White space characters

blank space, new-line (\n), carriage return (\r), form feed (\f), horizontal tab. (\t),
vertical tab (\v).

2.2 C TOKENS

The smallest individual units in a C program are called tokens as shown Below.

r y
l Keywords I | String literals ’ I Other Symbols

We shall be studying each of these in the sections to come.

2 »1

Principles of Programming and Algorithm 2 »2 Language Fundamentals
2.3 IDENTIFIERS AND KEYWORDS

Every C word is classified either as an identifier or a keyword.
Identifier

An identifier is a user-defined name given to a program element-varable,
function, and symbolic constants.

There are certain rules, which should be followed while naming an identifier. They
are:

L Identifier names must be a sequence of alphabets and digits and must begin
with an alphabet or an underscore ()

ii. No special symbols, except an underscore(_) are allowed. An underscore is
treated as a letter.

iil. Reserved words (keywords) should not be used as an identifier.

iv. C is case sensitive i.e C treats uppercase and lowercase letters differently. It is
a general practice to use lower (or mixed) case for variables and function
names and uppercase for symbolic constants.

V. For any internal identifier name (an identifier declared in the same file) at least
the first 31 characters are significant in any ANSI C compiler.

Examples of valid identifiers

Rate of interest add _matrix Sum P1
Month _of Year al23

Keywords

Keywords are reserved words and are predefined by the language. They cannot be

used by the programmer in any way other than that specified by the syntax. ANSI C
language has only 32 keywords. They are:

ANS! C Standard Keywords

auto double int struct
break else Long switch
case enum register typedef

char extern return union

const float Short unsigned

continue for signed void
default goto sizeof volatile

do if static while

Prunciples of Programming and Algorithm

2 »3 Language Fundamentals

The tollowing are additional keywords in Turbo C.

asm _es Far near
_Cs _SS Huge pascal
_ds cdecl interrupt

CONSTANTS

Constants refer to fixed values that do not change during program execution. They
can be classified as:

1.
ii.
iii.
iv.
V.

2.4.

Integer constants
Floating Point Constants
Characters constants
String literals

Enumeration constants.

1 Integer Constants

An integer constant refers to whole numbers. It can be specified in three ways:

a.
b.
C.

Ordinary Decimal number (base 10)
Octal numbers (base 8)
Hexadecimal numbers (base 16)

An inleger constant has to follow the following rules.

1.

1L
11

It contains a sequence of digits from 0 to 9. (Octal contains digits from O to 7;
Hexadecimal constant contains digits from 0 to 9 and letters A-F)

An octal constant is preceded with ‘0’ and hexadecimal constant with 0X or 0x.

No commas, spaces or other symbols are allowed in between.

iv. The integer can be either positive or negative. It may or may not be prefixed by
a — sign.
v. A size or sign qualifier can be appended at the end of the constant.
U or u for unsigned.
S or s for short
L or! for long.
Examples:
123 | 56789U (unsigned integer)
-31000 { 7689909L (long integer)
0170 | OX34ADL (long hexadecimal)
Ox 2A | 6578890994 UL (unsigned long integer)
—-100 s | 120US {unsigned short)

Principles of Programming and Algorithm 2 >4 Language Fundamentals

Note: The ANSI C standard supports a + sign before the positive integer
corresponding to the — for a negative integer although it is rarely used.

2.4.2 Floating Point Constants

These are real numbers having a decimal point or an exponentlal or both. The
rules governing the floating point representation are :

1. They have a decimal point and digits from 0 to 9.

ii. No embedded spaces, commas and other symbols are all‘bWedi

iii. They may or may not be prefixed by a - sign.

iv. Itis possible to omit digits before or after the decimal point.
Examples: 0.246 97564 - .54 +5.

Exponential notation

This is used to represent real numbers whose magnitude is very large or very
small.

The format is:

mantissa e exponent
Or
mantissa E exponent

i. The mantissa can be a floating point number or an integer.
1. It can be positive or negative.
iii. The exponent has to be an integer with optional plus or minus sign.

Example: The number 231.78 can be written as 0.23178e3 representing
0.23178 x 10 °.

75000000000 can be written as 75e9 or 0.75e11. 0.0000045 can be written as
0.45e - 5.

2.4.3 Character Constant

A character constant is any single character from the C character set enclosed
within single quotes. Example: ‘a' ‘'#' 2

The value of the character constant is the numeric value of the character.

Example: the character constant ‘0’ has ASCII value 48, which is unrelated to
numeric digit 0.
Escape Sequences

C supports some special character constants used in output functions. They are
also called backslash character constants because they contain a backslash and a
character.

Although they look like two characters, they represent only one.

Complete set of escape sequence is:

Principles of Programming and Algorithm 2>»5 Language Fundamentals

Character Meaning

\a alert (bell)

\b backspace

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\0 null character

W\ backslash

\? question mark

\ single quote

V double quote

\0 octal number
XN hexadecimal constant (where N is hexadecimal constant)
\N octal constant (where N is an octal constant)

244 String Literals

A string constant or string literal is a sequence of zero or more characters enclosed

in double quotes.
Example: "Welcome to C"
“First Line \n Second Line"

The double quotes are not a part of the string but only act as delimiters. If the
backslash or double quote is required to be a part of the string, they must be preceded
by a backslash (\).

Example:
printf (“*He said \“Hello * ”); will display
He said “Hello”
printf (“\\ is a backslash”) ; displays:
\ is a backslash

Technically, the internal representation of a string-has a null character ('\0') at the
end. Therefore the physical storage required is one more than the number of
characters in the string.

Difference between ‘a’ and “a”.

‘a’ is a character constant and stored as the numeric value of a. “a" is a string
literal and consists of the characters, a and ‘\0'.

’ [Tt}

>
H

1byte 1byte

O ~< T =

Principles of Programming and Algorithm 2>6 Language Fundamentals

2.4.5 Enumeration Constant
An enumeration is a list of constant values—- each can be represented by an integer.

It is a user defined data type with values ranging over a finite set of identifiers
called enumeration constants.

Example: enum color {red, blue, green};

Red, blue and green are constants, which represent the integer values of 0,1 and
2 respectively.

Values can be explicitly specified for the identifiers.
enun color {red = 10, blue, green = 30 };.

Here, blue is assigned number 11. If no value is specified for green it will assume
the value 12.

Enumerations provide a convenient way to associate constant values with names.
It also makes the program easy to read and understand.

2.5 VARIABLES

A variable name is an identifier or symbolic name assigned to the memory
location where data is stored. In other words, it is the data name that refers to the
stored value. A variable can have only one value assigned to it at any given time
during program execution. Its value may change during the execution of the
program. Rules regarding naming variables:

1. Since the variable name is an identifier, the same rules apply.
il Meaningful names should be given so as to reflect value it is representing.
student name rank 1
basic_sal armount
roli_num No_of _years
2.5.1 Data types in C

Programs work by processing data. A programming language must give you a way
of storing the data. Associated with the data 1s its type.

When a variable is used, you have to specify what type of data it can contain.

The C programming language supports the following data types:
int float double char void

They are called basic or fundamentals data types. In addition, C also supports the
enumerated data type specified by the keyword enum.

Principles of Programming and Algorithm 2 »7 Lariguage Fundamentals

Fundamental data types

Data types Description ; Size (in bytes) Range
char A single character 1 —-128to 127
Int an integer number 2 ~32768 to 32767
float A smglgpreqsu.on floating point number 4 3.4 6-3810 3.4 & +38
(6 precision digits))
double A double precision floating point number 8 1.7e-308 to '1.7e
(10 precision digits) +308
void empty data type 0 valueless

The size allocated for an integer depends upon the compiler. The size of a data—
type can be obtained by using the sizeof() operator which ¢ives the size of the
specified data type in bytes.

Usage:

sizeof (data_type)

Example:

printf (“%d”,sizeof (char));
Qualifiers

A qualifier, when applied to a data type alters its size or sign.
The size qualifiers are
e short
e long
The sign qualifiers are
e signed
e unsigned

Normally, short and long cannot be applied to char and float and signed and
unsigned cannot be applied to float, double and long double.
ANSI C has the following rules:
short int < = int < = long int
float < = double < = long double
The dala types, sizes and their ranges are as shown in the following table.
All possibie Data types in C (Basic and Qualified)

Type Size (in bytes) Range
char 1 -1281t0 127
unsigned char 1 0 to 255
signed char 1 -128to 127
unsigned int 2 0 to 65535
signed int 2 ~-32768 to +32767
unsigned short int 2 0 to 65535

Principles of Programming and Algorithm 2>»8 Language Fundamentals

short signed int 2 -32768 to 32767

long int 4 2147483648 to 2147483647
long unsigned int 4 0 to 4294967295

long signed int 4 —2147483647 10 2147483648
float 4 3.4e-381t0 3.4 e+ 38

double 8 1.7e — 30810 1.7 e+ 308

long double 10 ~1.7e4932 to +1.7e4932

Note: The exact size allocated and the ranges for these data types can be obtained
from constants defined in header files <limits.h>, <float.h> and <values.h>.

Enamerated Data type

A user defined data type along with its set of identifiers can be created by the
following declaration.

Ienum data_type name {consttl , constt2,};]

Example:

enum daysofweek { Sun, Mon, Tue, Wed, Thu, Fri, Sat};
void data type
void is an empty data type defined by the keyword void. It is'used with functions.

When used as a function return type, it means that the function does not return
anything.
Example: void calculate_and_display (int a).

When used in place of the parameter list, it indicates that the function does not
accept any information.

Example: int random_number (void).
We shall be dealing more with void data type in the book.
Creating new data-types names
C provides a facility called typedef for creating new data type names.

The syntax of typedef is

[typedef data_type synonym |

For example, the statement,

typedef unsigned long ulong;

declares ulong as a new data type equivalent to unsigned long. It can be used in
exactly the same way as the type unsigned long can be.

Example
typedef int length;
makes the name ‘length’ a synonym for int.

~ It is important to understand that a typedef statement does not create a new type
1n any sense; it merely adds a new name for some existing type.
» Use of typedef enhances program readability.

Principles of Programming and Algorithm 2 »9 Language Fundamentals

DATA DECLARATIONS AND
DEFINITIONS

Programs operate on data. The data items, which a program manipulates, can be

divided into two classes:

1.
2.

Constants

Variables

While variables take different values at different points in time as the program

executes, constants have fixed values. These must be declared before they are used.

1.

Declaring variables
All variables used ir the program must be declared at the beginning.

A variable can be used to store data of any data type irrespective of what the
variable name is. A variable is declared by the following syntax.

Storage class Data-type varl,
var2,,varn

where varl to varn are variable names separated by commas. We shall study
about storage classes in later.

Example:

int marks, age;

float amount;

Declaration does two things:
L. It informs the compiler the name of the variable.
11 It specifies what type of data the variable will hold.
There are three basic places where variables will be declared
1. Inside functions - local variables
ii. In the definition of function parameters — formal parameters.
ni. Outside all functions — global variables.
Local variables: These variables are also called automatic variables (keyword
‘auto’ may be used to declare them). They can be used only within the block
where they are declared. A local variable is created upon entry into the block
and destroyed upon exit.
Example : Consider two functions as shown
funcl()
{ int x;
x = 20;

}
func2()
{ int x;
x = 100;
}

Here, x has been declared twice but the variable x in func1{() is not related to

the variable x in func2(). Both are independent and exist only within their
respective functions.

Principles of Programming and Algorithm 2 >»10 Language Fundamentals

Formal paramefers

If a function is to accept data, it must use arguments and declare them to
accept values. They behave like any other local variable inside the function.

Example
sum(int a, int b)

{

il

}function body

)

Here, sum is a function which accepts two integer values in variables a and b.
It could also be written as follows:

sum(a, b)

int a;

int b;

{

function body
}
We shall be studying formal parameters in detail in the Chapter 'Functions'.
Global Variables
Unlike local variables, global variables exist and can be used anywhere in a
program. They may be accessed by any expression regardless of what
function the expression is in.
They are created by declaring them outside any function.
Example

int count; /* count is global */
main()
{ count = 200;
funci();
}
funci()
{ count = 200 ;

}
Initializing Variables

Assigning values to variables during declaration is called initialization.
Example
int i =5 ;

This statement not only declares the variable i but also assign the value 5 to
this variable.

‘Multiple variables can also be initialized.
Example

int sum = 0, i = 10 ;

Defining Constants

A constant can be declared in C by twn methods

¢ Using const qualifier

Principles of Programming and Algorithm 2>1 Language Fundamentals

* Using the #define preprocessor directive.

const is a qualifier that can be applied to a data item of any data type. The
contents of this data item cannot be changed during program execution— only
assigned at the time of declaration (initialized).

Syntax

Icons data_type constant name = value;l
Example

const float pi = 3.142 ;

const char quit = ‘q’;

Another method of defining constants is by using a pre-processor directive —
#define.

{Pre—Processor directives are covered later in this book)

The #define directive works as follows

| #define CONSTNAME literal |

This creates a constant named CONSTNAME, which represents the constant
value of the literal. By convention, the constant name is written in uppercase.
Example

#define PI 3.142
#define TRUE 1

Any occurrence of PI in the program is replaced by the literal 3.142.

cise

Programming exercises

Which of the following are invalid identifier names? Why ?

rate_ of_interest Basic salary
Pl “name”
2nd _ month Float
Compound_interest Address_of_employee
124.56 X+y

Which of the following are invalid constants of the specified category ? Why?
a) Integer

25,000 40565 OxAB
-75.0 ‘128" -327000

b) Character

gt o5y A
‘1" abcd ‘#a’ W

Principles of Programming and Aigorithm 2 »12 Language Fundamentals

c) String literals

“He said, “Hello””

* abc # S - \n”

v 123.256"

“ ((left corner \ r Back to the left \n\n”

d) float

16.3e-18 -17.e.3 914533
25x16.6 +1.7e-3 25.4e+4

3. Write equivalent C expressions for the following equations.
at+b a-b [3xly X]
c+d c-d ' x+y (x+y) (X-y)
S =ut+lat2. f=9-9+32
2 ' 5
B. Review Questions
1. Explain the four basic data types in C.
2. Explain the types of constants in C.
3. What are variables? State the rules for naming a varlable.
4. What is an escape sequence?
5. What are the two methods for declaring constants?

OPERATORS 3

3.1 OPERATORS AND EXPRESSIONS

An operator is a symbol that represents an operation. It instructs the compiler to
perform some action on one or more operands.

Example

The Symbol + represents addition.

An expression is a combination of variables, constants and operators written
according to the syntax of the language. In C, every expression evaluates to a value
Le. , every expression results in some value of a certain type that can be then
assigned.

Examples of expressions

a+b
PI *r *r
(x + vy) - z.

An operator can be unary, binary or ternary depending on whether it operates on
one, two, or three operands respectively.

Operators can be classified according to the nature of operation they perform. The
different categories are:

. Arithmetic operators

. Relational operators

. Logical operators

. ‘Assignment operator

. Increment and Decrement operators
. Conditional Operator

. Bitwise operators

o Other operators,

Principles of Programming and Algorithm 3»2 Operators

Operator Precedence Hierarchy and Associativity

If an expression contains more than one operator, the important question is what
is the order of evaluation? Some rules are needed to specify the order in which

operations are performed. These rules are called Operator Precedence or Hierarchy
rules.

Precedence states the relative importance or priority of operators with respect to
other operators.

Another possibility is that an expression may contain more than one operator
having the same priority. Here, the associativity specifies the order of evaluation of
operators having the same precedence or at the same hierarchy level.

3.1.1 Arithmetic Operators
These perform arithmetic operations. C provides five arithmetic operators.
Operator Meaning Remark
+ Addition Can also be used as unary plus.
- Subtraction Also used as unary minus
* Multiplication
/ Division
% Modulo Division | Can be used only on integer data type

Note: C has no operator for exponentiation. (The function pow(x,y) in math.h can
be used to calculate x').

e The unary minus operator has the effect of multiplying the operand by -1.
e The unary plus, which was added later, gives the value of the operand.

e Arithmetic operations performed on integers (integer arithmetic) yields an integer
values.

Example 16+5 = 21
16-5 =11
165 = 80
16/5 =3
5/2 =
16%5 =
-16% 5 = -1 (remainder after division and the sign is of the first

operand)

Principles of Programming and Algorithm 3»3 Operators

* Arithmetic operations performed on float operands (float arithmetic) yield a float
result, which is rounded off to the number of significant digits permissible.

Example 50+20 =70
5.0/2.0 = 25
-2.0/3.0 = -0.666667

e when the operands are of different data types (mixed mode arithmetic), the result
is promoted to the ‘higher' data type. (char < int < float). Thus if one operand is
an integer and the other float the result will be of float type.

Example 50/2=25

Hierarchy of Grithmetic Operators

Operators

Associativity

! %

Lo>R

+ -

L—-R

Example
Consider the integer expression
S2+4-6%2+25/5-3/4
The order of evaluation is as shown:
2 +4-6"2+25/5-3/4
24+4-6*2+25/5-3/4
2+4-12+25/5-3/4
2+4-124+5-3/4
2+4-12+5-0
6-12+5-0
~645-0
-1-9

-1

Nete: In oider to oveiiide the operator precedence rules, parentheses can be used
since parentiicses have higher nriority over operators.

Example: In the cxpression (4+5) * 6,

1he addition will be done first even though * has higher precedence since the

addition operation is parenthesized,

Principles of Programming and Algorithm 3»4 Operators

3.1.2 Relational Operators

Relational operators are used to compare expressions. An expression containing a
relational operator evaluates to either True (1) or False (0).

Any non-zero value is considered "True' in C and 0 is false. Thus, even negative
values are True!

The six relational operators are

Operator Meaning
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to (equality)
= Not equal to (inequality)

These operators are mainly used in decision-making statements to decide the
course of action in a program. These operators are lower in precedence than
arithmetic operators. Among themselves, the precedence is

Operators Associativity

< <= >>= L—>R
== |I= L-R
Examples

25<30 True
2.5<=2.5 True
‘a'==97 True
<t False
(a+b)!= (x+y) | True if the sum of values of a and b is not equal to the sum of values of x and y

3.1.3 Logical Operators

Sometimes, we need to test more than one condition at a time and make a decision
depending upon the result.

The logical operators are used to combine two or more expressions (usually
relational). The entire expression is called logical expression which evaluates to
True(1) or False (0). The three logical operators in C are:

‘Operator Meaning | Remarks

& & | Logical AND
|| Logical OR
f

Logicai NOT Unary operators

Binary operators

Principles of Programming and Algorithm 3»5 Operators

Evaluation of a logical expression stops as soon as a true or false result is known.

The results of logical AND (&&) and OR (1) operators for different combinations
of the two operands is given in the following truth table.

Op1 Op2 | Op1 && Op2 | Op1 || Op2
False | False 0 0
False | True 0 1
True | False 0 1
True | True 1 1

Examples

(marks > = 60) && (marks < 70)

age > 60 || salary > 10000

The logical NOT (!) operator takes a single expression and reverses the value of
the expression i.e. if the expression is True, the ! operator evaluates to false and vice-
versa.

Example
'(5 < 10) evaluate to 0 since 5 < 10 is True.

Precedence and Associtivity of logical operators.

Operators .| Associativity
! R-L
&& L—-R
I LR

Note: | has higher priority than arithmetic and relational operators, but && and
|| have lower priority than both.

3.1.4 Increment and Decrement operators

C provides two useful unary operators not generally found in other languages;

They are,
++ Increment
— - Decrement

++ increments the value of the operand by 1 and - - decrements the value of the
operand by 1. Both these operators can be used in the prefix form (i.e. before the
operand) or the postfix form (after the operand). The operand can only be a single
variable.

When used in the pretix form, the increment or decrement is done before the value
of the uperand is used. If used in the postfix form, the operand increments or
decrements after its value have been used.

Principles of Programming and Algorithm 3»6 Operators

Note: When used independently, the prefix and postfix forms make no difference
but they behave differently when used in expressions on the right hand of an
assignment statements.

Example

If n is 5, then the statements ++n; and n++ ; both increment the values of n by 1
and are equivalent to n= n+1;

However, in the statement,

y = n++ ; n increments after its value has been assigned to y i.e y is given the
value 5 and then n becomes 6. Whereas y = ++ n first increments n to 6 and 6 is then
assigned to y.

The same logic applies to the decrement operator.

Example
Consider the expression x++ &&-++y ||z++ .

If values of x, y and z are 0,1 and O respectively, the expression evaluates to 0 and
values of x,y and z becomes 1,1 and 1 respectively.

The && operation is performed before ||. For the && the initial value of x i.e. 0 is
used. +-+y will not be evaluated since the result of the && operation is known to be 0.
For the || operation, one operand is 0 and so the other operand is evaluated. The old

value of z (i.e 0) is used since it is post- increment. .. 0] |0 yields 0 and then z
increments to 1.

The increment and decrement operators are along with the logical NOT in

precedence, i.e the highest level we have seen so far. They have a R > L
associativity.

3.1.5 Bitwise Operators

C has a distinction of providing six operators for manipulation of data at bit level.

They are applied only to integral operands i.e. char, short int and long whether
signed or unsigned.

Operator ~ Operation
& Bitwise AND
| Bitwise OR
A Bitwise XOR
<< Left shift
>> Right shift
~ One’s complement (Unary)

Except for ~ the others are binary operators and operate on corresponding bits of
the two operands.

Principles of Programming and Algorithm 3I»7 Operators

The bitwise XOR (exclusive OR) operator sets a one in each bit position where its
operands have different bits and zero where they are the same.

Example

Assume that a and b are integers with values 13 and 7 respectively. Assuming that
an integer occupies 2 bytes,

a in binary = 0000 0000 0000 1101

b in binary = 0000 0000 0000 0111
a&b = 0000 0000 0000 0101
alb = 0000 0000 0000 1111

a”b = 0000 0000 0000 1010
Shift operators

The bit pattern of the data can be shifted by a specified number of positions to the
left or right using the left shift (<<) and right shift (>>) operators respectively. The
shift operators perform shift of their left operand.

When the data is shifted left, the trailing empty spaces are filled with zeros.

Similarly, the leading empty spaces are zero filled when data bits are shifted right.

Example:
a= 0000 0000 0000 1101
a<<3= 0000 0000 0000 1000
e
zero filled spaces
a>>3= 0000 0000 0000 C001

{The rightmost three bits drop off)

The general syntax is:

operandl shift_operator
operand?2

Note: Shifting by one position to left is effectively multiplying the operand by two.
Shifting right by one position divides the operand by two.
One’s complement operator

The ~ operator yields the one's complement of an integer, that is, it inverts each
bit of the operand (1 to 0 and vice versa)

Example
Ifa = 0000 0000 0000 1101
~a = 1111 1111 1111 0010
Precedence
~ is along with other unary operators like ++, ~— and ! in hierarchy with R — L

associtivity. The shift operators have higher precedence as compared to Bitwise AND,
OR and XOR.

Principles of Programming and Algorithm 3>»8 Operators

3.1.6 Assignment operator

The assignment operator = is used to assign the value of an expression to a
variable. The syntax is

[variable = expression |

An assignment expression followed by a ; becomes an assignment statement.
Example

sum = a + 10;

The expression a + 10 is evaluated and its value is assigned to variable sum.
c=a<<3;
x=a'3 +b/5;
Shorthand assignment operators

These are obtained by combining certain operators with the = operator. They have
the format

[variable operator= expression;]

C supports the following shorthand assignment bﬁei'ators
+ = — = /: % = < << = >> =& = l: N =

Examples: X +=vYy;implies x =x+vYy;
m/= 3 ;implies m=m/3 ;
a+=b+1;impliesa= a+ (b+1)
Precedence

Assignment operators have the lowest priority so far with associativity R — L.

Example: Consider the statement

a=b=c;
Here, the value of ¢ is assigned first to b which is then assigned to a.
i =] += k ; is also a valid assignment statement which is the same as
i=j)=]+k;
3.1.7 Conditional operators

This is the only ternary operator in C. The operator pair ?: is used to construct
conditional expression of the form.

| expression1? expression? : expression 3 |
<— Conditional expression ——>

Principles of Programming and Algorithm 3>»9 Operators

expression 1 is evaluated first. If it is True (nonzero), then expre':'sé‘ion2 is
evaluated and becomes the resulting value of the conditional expression. :

If expression is 0 (False), the value of the entire expression is that of expression3.

Example: Let a = 10and b = 15,
larger = (a>b)?a:b;
Here larger will be assigned 15 i.e. the value of b.

This is the same as
if (a > b)

larger = a ;
else
larger = b ;
3.1.8 Other operators

Comma Operator

The comma ' operator is used to separate a set of expressions. A pair of
expressions separated by a comma is evaluated left to right and the type and value of
the result are the type and value of the right operand.

Example: Consider i = (j=3,j+2);
Here, the right hand side contains two expressions j = 3 and j + 2 which are
evaluated L —R. Thus 3 is first assigned to j and the value 3 + 2 is assigned to i.

It could also be used to interchange the values of two variables in a single
statement as shown.

temp = a, a = b, b = temp ;
The comma operator has the lowest precedence and associates from L — R.

size of Operator

This unary operator gives the size (in bytes) of the data-type or variable. The
usage is

[Sizeof (data type) |
OR
| Sizeof (object) |

Example : sizeof(char) gives the result as 1.

Example:
printf(“%d %d”, sizeof(int), sizeof(float);

typecast operator

C provides a unary operator for explicit type conversion called cast operator. Its
usage is

[(type_name) expression |
The expression is converted to the specified data type locally only for the purpose
of evaluation of the expression.

Principles of Programming and Algorithm 3> 10 Operators

Example: The ratio of number of males to the number of females in a town can be
calculated as :

ratio = no_of_males / no_of_females ;

Since no_of_males and no_of females will be declared integers, the division of the
two yields an integer. So even if ratio is declared as a float, the fractional part is
truncated due to integer arithmetic on the right. This can be solved by locally
converting one of the operands to a float so that the result of division is a
float ratio = (float)no_of males/no_of females;

fiddress (&) and Indirection (.) operators

C provides two unary operators for manipulating data using pointers.

The & operator when used with a variable yields its address.

The operator denotes indirection and returns the value of the object located at the
address that follow it.

We shall study more about these in later chapters.

Both these operators have a high precedence along with other unary operators.
The « and -> operators

The « (dot) and —> (arrow) operators are used to refer to individual elements of
structures and unions (covered in later chapters). Structures and unions are
compound data types that can be referenced under a single name.

[1and ()

Parentheses () are used to increase the precedence of operators inside them.
Square brackets perform array indexing i.e. given an array, the expression within | |
provides an index or subscript to the array.

3.1.9 Precedence and Associativity of operators

The operators are listed in order of decreasing precedence. The Operators grouped
together in one level have the same precedence.

Level | Operator Description Associativity
1 () Function call L->R
[] Array element reference L—R
- Pointer to structure member reference L—>R
. Structure member reference L—>R
2 - Unary Minus R-L
+ Unary plus R—-L
++ Increment R-L
-- Decrement R—-L
! Logical negation R-oL
~ One's complement R—-L
* Pointer reference (indirection) R—-L
& Address R—-L
sizeof Size of an object R-L
(type) Type cast R—L

Principles of Programming and Algorithm 3> 11 Operators
3 * Multiplication L->R
/ Division L—-R
% Modulo division L->R
4 + Addition L->R
- Subtraction L-R
5 << Left shift L—-R
>> Right shift L—-R
6 < Less than L—R
<= Less than or equal to L—->R
> Greater than L—->R
>= Greater than or equal to L—->R
7 == Equality L->R
I= Inequality L—>R
8 & Bitwise AND L—-R
9 A Bitwise XOR L—R
10 | Bitwise OR L—R
11 && Logical AND L—-R
12 I Logical OR L-R
13 2 Conditional L->R
14 ‘;/:;: t ~: Assignment RoL
<< = >>=
15 , Comma L-R
3.2 STATEMENTS

A C program consists of statements. A statement is composed of expressions and
operators and it is a complete instruction instructing the compiler to carry out some

task.

Like mentioned earlier C statements must always end with a semicolon
(except for preprocessor directives which are discussed later).

Example:

x=a+b;
y=01+3)*§{-5);

These are examples of assignment statements.

Principles of Programming and Algorithm 3»12 Operators

Types of Statements

C statements can belong to one of the following categories:
1. Null statement
A semicolon on a line is a null statement. It does not perform any action.
2. Expression statement
Most expression statements are assignments or function calls.
3. Compound statement

Several statements grouped together in { } forms a compound statement or a
block. The body of a function is also a compound statement. There can be
statements of other types within the braces.

4. Selection statement

These statements involve condition checking and choose one of several flows of
control. Statements of this type are if statement, if else and switch statement
which will be discussed in later chapters.

5. lteration statement

These statements specify looping, where a statement or a block has to be

repeatedly executed a specific number of times or as long as the test expression
is satisfied.

The while, do - while and for statements belong to this category.

6. Jump statement

Jump statements transfer control unconditionally. These are goto, continue,
break and return statements.

7. Labeled statements

Some statements may carry label prefixes. The label identifier does not need to
be declared and can only be used with the goto statement. Other forms of the
labeled statements are within the switch statement (case and default).

OLVED PROGRAMS

1.

[

b=

/*Find simple interest */

#include<stdio.h>
main()
{
float principal, rate, time, interest;
clrscr();
printf (*Enter the principal:”);
scanf (“*%f”, &principal);

Principles of Programming and Algorithm 3»13 Operators

printf(*\nEnter the rate of interest:”);

scanf (*%f”, &rate);
printf (“\nEnter the time in years:”);
scanf (“%f”, &time);

/* echo the data */

printf (\nPrincipal = %2f\n”, principal);
printf(*\nRate = %2f\n”,rate)

printf(*\nTime = %$2f\n”, time);

interest = principal * rate * time/100.0;

printf (*\n\nSimple interest is : %2f\n”, interest);

getch(); /* freeze the monitor*/

}
[
===

Oufput

Enter the principal : 1000

Enter the rate of interest : b5

Enter the time in years : 4

Principal = 1000.00

Rate = 5.00

Time = 4.00

Simple interest is 200.00

2.

J
== /* Compute surface area and volume of a cube */
#include<stdio.h>

main{)

{

floatside, surface_area, volume;

clrscr();

printf (“Enter the side of cube”);

scanf (“%f”, &side);

surface_area = 6*side*side;

volume=side*side*side;

printf (*\nSurface area of cube is %2f sg. units\n”),
surface_area) ;

printf (*\nvVolume of cube is %2f cubic units\n”,volume);

getch(); /* freeze the monitor*/

} i

]

Output

Enter the side of cube : 3
Ssurface area of cube is 54.00 sqg. units
Volume of cube is 27.00 cubic units

Principles of Programming and Algorithm 3> 14 Operators

3.

o

/* Calculate the sum of average of five numbers */

#include<stdio.h>
main{)

{

float a, b, ¢, 4, e, sum, aveg;
clrscr();

printf (“Enter the five numbers\n”);
scanf (“$f¥ESELELLEY, &a, &b, &c, &d, &e);
/* echo the data */

printf (*\nEntered numbers are");

printf (%8.2£f%8.2£%8.2f%8.2f%8.2f\n", a, b, ¢, 4, e);
sum = a+b+c+d+e;

avg = sum / 5.0;

printf (*\nSum = %2f\n”, sum);

printf (“\nAverage=%2f\n*, avg);

getch(); /* freeze the monitor*/

Output

Enter the five numbers

10

25 38 59 13

Entered numbers are 10.00 25.00 38.00 59.00 13.00
Sum = 145.00
Average = 29.00

4.

£

/* Leap year checking */

#include<stdio.h>

main()

{
int year;
clrscr();

printf (*Enter the year:”);
scanf (*%d”, &year);

if(((year%4 ==0) && (year%100!=0)) || (year$400==0))
printf(*n%d is a leap year\n”, year);
else
printf (*\n%d is not a leap year\n”, year):
getch(); /* freeze the monitor*/

Principles of Programming and Algorithm 3»15 Operators

Output
Enter the year : 2004

2004 is a leap year
Enter the year: 2005
2005 is not a leap year

A. Programming exercises

1. Evaluate the following C expressions.
i. 25/4+3-7%3 +2
ii. 6.5 + (float) 5/2-3 % 8-6.5
ili. (-13%2) % (8*2)-7
iv. (18-3"3) % (99-2 *10) / (2.5-1.5)
v. 2" ((18/5) + (6* (1.5 +1) % (10-2-1)

2. Given that initiallyi = 0, j = 2 and k = 3, find x and the new values of i, j and
k for each of the following expressions.

i Xx=1++ || +4) && k++;
ii. x = ((i<j)]] j++)&& k++;
ii. k= (i+]) %k

iv. x=(==2)?¢k:1
\'p x=(i>j)¢++i:(k>j)?j:1
Vi. X=i++?2j—-:k—,

vii. k% == (i =4)% (=3)
viii. x=j>k?k>i212:k>j?213:14:15
iXx. k+=i4++ + ++j]°3

3. What will be the output of the following?

main() main()

{ printf() ;} { printf (™ H\re\rll\O0”);
main() main() .

{ const int 1 = 10; { printf{(“Hello\n*);
i = 20; main() ;

} }

Principles of Programming and Algorithm 3> 16 Operators

=

Review questions

© ©® N O v oA W N

State the different categories of operators. Explain the arithmetic operators.
Explain the use of sizeof {) and type cast operator.

Explain precedence and associativity of operators.

What are the different types of C statements?

What is the difference between a statement and a block?

Are negative numbers considered true or false by C?

Discuss logical operators of C.

Explain bitwise operators of C.

Discuss various forms of increment and decrement operators.

BUILT-IN OPERATORS
AND FUNCTION

4.1 INTRODUCTION

All computers programs essentially read, process and display data. Unlike other
high level languages, C does not provide built-in input/output statements. All
input/output operations have to be carried out by using functions. Many functions for
the above purpose have been provided in the C standard input output library
{stdio.h). Included in this file are declarations for the I/O functions and definitions of
constants (like EOF, NULL, etc.). These functions interact with the standard input
(usually the keyboard) and the standard output (usually the screen.) Functions that
perform input-output with files are discussed in a later chapter.

4.2 CHARACTER INPUT AND OUTPUT
(getchar and putchar)

The standard library provides several functions for reading and writing one
character at a time of which getchar and putchar are the simplest.

The function getchar reads and returns an input character from the standard input
device.

Usage

[variable name = getchar(); |

The variable is of char or integer type. getchar assigns the character value of the
input character to the variable.

Example

char c;
c=getchar{);

The function putchar writes a single character on the standard output device.

4 >»1

Principles of Programming and Algorithm 4 »2 Built —in Operators and Function

Usage
Usage
Putchar (variable name) ;
OR
{ Putchar (character); |
Example:
1. char c=getchar();

putchar(c) ;

2. char ans = ‘y’;
putchar (ans) ;

3. putchar(*\ n’); /* positions the cursor to the beginning of
the next line. */

Character test and conversion functions

The header file ctype.h contains declarations of several functions, which are used

to test or convert a character.

Function ‘Description:

isalnum(c) | Returns true if ¢ is an alphanumeric character.

isalpha(c) Returns true if ¢ is an alphabet

isdigit(c) Returns true if ¢ is a digit

islower(c) | Returns true if ¢ is a lowercase alphabet.

isupper(c) | Returns true if c is an uppercase character.

ispunct(c) | Returns true if ¢ is a punctuation mark a

isspace(c) | Returns true if c is white space characters

toupper(c) Converts ¢ to uppercase if it is a lowercase letter otherwise keeps ¢ unchanged

tolower(c) Returns ¢ converted to lowercase if it is uppercase and unchanged otherwise.
Example
char ch = ‘a‘’;

putchar (toupper {(ch));

will display A on screen.

Character test functions are used with control structures like if, while, etc, which

we shall study in the next chapter. However the following program illustrates how
they can be used.

Principles of Programming and Algorithm 4 »3 Built —in Operators and Function
o

#include<stdio.h>
#include<ctype.h>
main()
{
char ch;
printf (”“Enter a character:"“);
ch = getchar() ;
if (isalpha(ch))
{ printf (* It is an alphabet”);
if (isupper(ch))
{ printf(™"\n It is in uppercase \n “);
putchar (tolower(ch)); /* convert to lowercase */

/* Illustrates character input-output, test and conversion functions*/

else
{ printf{(*\n It is in lower case \n ")
putchar (toupper (ch));
}

}
else
printf(*\n Not an alphabet”) :
} e
Output a
Enter a character :*
Not an alphabet
Output b

Enter a character :b
It is an alphabet

It is in lowercase

B

Note: getch() and getche() can also be used to read a single character as
getchar(). They are defined in <conio.h>. The difference between the two is that
getche() accepts an input character and echoes (i.e displays) it on screen also
whereas getci() does not echo it on screen. getch() can be used to accept passwords.

4.3 STRING INPUT AND OUTPUT [gets() &
puts()]

‘Two functions gets() and puts() in the standard input output library are used for
string input and output respectively.

gets() accepts a string from stdin (Standard input device). gets() continues
reading the string, character by character until the ‘Enter' key is pressed. The

Principles of Programming and Algorithm 4 »4 Built —in Operators and Function

newline is replaced by a NULL character (\0) at the end of the string. Spaces and tabs
are allowed within the string.
Usage: [gets{name_of _stringj ;]

puts() outputs a string to the standard output device. It also appends a new-line
character at the end.

Usage:
puts (name_of_string); or
puts{string literal);
[
L

/* Illustrates string input-output */

#include<stdio.h>
main ()
{ char str[80];
printf(“Type a string less than 80 characters : ™);

gets{str) ;
printf (“You typed :%“);
puts(str) ;
} e
o
Output

Type a string less than 80 characters: C is easy!
You typed: C is easy!

m GENERAL OUTPUT / FORMATTED
OUTPUT (printf)

The putchar() and puts() functions can be used only with character and string
respectively.

A versatile output function is printi which can handle any built-in data type and
you can specify the format in which the data must be displayed i.e. printf displays
formatted output to the standard output device. It returns the number of characters
actually printed.

Syntax

[int printf (“control string” , argl, arg2 ... argn); |

Control string consists of
. Ordinary characters that are printed on screen as they appear.

. Format specifiers or conversion specifiers, which define the output format of
each argument.

. Escape sequences like \n, \b,\r, etc.

Principles of Programming and Algorithm

4 »5

Built ~in Operators and Function

Format specifier

There must be exactly the same number of arguments as there are format
specifier in the same order.

Each format specifier begins with a % and ends with a conversion character.

Between the % and the character, there may optionally be,

1.

1.

1.

A minus sign for left justification of the argument.

A number that specifies minimum field width. If * is given, it implies take
next argument as field width.

A period, which separates field width from the precision.

iv. A number, specifying precision i.e the number of characters to be printed
from a string, or the number of digits after the decimal point of a float
value, or the minimum numbers of digits for an integer. * means take
next argument size.

v. hif integer is to be printed as short, 1 for long and L for long double.

printf conversion character and meaning

Character | Argument type Printed As

% C int or char Single character

Yol, %d int Signed decimal integer

YoX, %X int Unsigned Hexadecimal number using a.. ... forA....F.

%0 int Unsigned octal number

Yof float, double Floating point numbers 6 decimal places by default

%e,%E float, double Floating point numbers in exponential format

%g,%G float, double Uses %e or % f whichever is shorter.

Yop void * Pointer

% % no argument Prints a %

You unsigned int Unsigned decimal number

printt conversion character for qualified data types

Format specifier Argument type Output
“eld, li Long Decimal long integer
%l.u Unsigned long Unsigned long integer
“ehd, hi Short Decimal short integer
Sehu Linsigned short Decimal unsigned short
%ele, if, Ig Double Signed double

7/55:? g iong double Signed long double
%! Lbng Octal long integer

| %lx Long Hexadecimal long

Principles of Programming and Algorithm

4 »>6

Built —in Operators and Function

Examples

1.

2. printf(" ")
3. printf{ "\n");
4.

5.

6.

printf("This is a string");

printf(“The value of x is %d" , X);

printf("radius %f, area = %" , rad, area);

printf(* Hi %d %c %s" , 2, ‘'U’, "Welcome ! *);
outputs Hi 2 U Welcome !

7. The following statements illustrate the output of number 1234 in different
formats.
printf (“ %d" , 1234); 1121314
printf (" %2 d", 1234); 1121314
printf (“ %6d ", 1234); 1121314
printf (* % -6d", 1234); 1121314
printf (“% 06d" ,1234); |0 |0 | 1]2}13 4
8. Displaying a float value in various formats
printf (* %f ", 12.3456); 1{2]e]3]5J4]6]0]0]
printf (” %8.2f ", 12.3456); 112 e 3|5
printf (* %10.2e", 12.3456); 1]le {2]le|l+10
printf (“ % -10.2e", 12.3456); | 1 e |2 (e |+ |0 |1
printf (" %E" , 12.3456); 1le{2|3|4 |5|6E]|+ 1
9. Displaying a string “ Learn, Write “ with different formats.
%s Lielalr|nj, Wirlilt je
%10s Lieja|r|n}|, Wilr|i |t (e
% .10s Liejlalr|n|, Wir|i|.
%15 s Lleja|r|n |, WirjI |t
% - 15s Liela|r|n{, Wilr|i |t |e
%15.10s Llela {r|inj, Wir
%-15.10s [L]lela|r {n|, Wi lr|i
%*.*s,15,2 L
10. printf (* %d", printf ("Hello")); will produce the following output : Hello5

Principles of Programming and Algorithm 4 >»7 Built ~in Operators and Function

FORMATTED INPUT (scanf)

The general purpose input function is scanf. It reads characters from the standard
input, interprets them according to the format specifics and stores them in the

corresponding arguments. It returns a number equal to the number of fields that
were successfully assigned values.

Syntax:

[int scanf (“control string * ,&varl, &var2,&varn) ; |

The argument, each of which is an address, specifies the location where the
corresponding converted input should be stored.

The control string may contain

1. White space characters.
2. Conversion specifications which consists of a % sign, an optional suppression
character *, an optional number specifying a maximum field width, an optional

h (for short int), 1 (for long int or double), L (for Long double) and a conversion
character.

3. A non-white character which causes scanf to discard the matching character.
scanf conversion characters

Character | Data read as
%d Decimal integer
%c Single character
Yol Integer (may be in octal with leading 0 or hexadecimal with leading Ox or ox)
%0 Octal integer
YU Unsigned decimal integer
%S Character string
%e.f,g Floating point number
YoX Hexadecimal number
Search sets, which are a sequence of characters. Scanf stops reading a string
%]...] as soon as a character not in the set is encountered. If the first character in the
oL set is a A, scanf reads all characters till the first matching character from the set
is read from the input. Search sets are case sensitive.
Examples
1. scanf ("%f", &radius);
2. scanf (“%d %f", &roll_num, & marks);
3. scanf ("%d%s", &age, fname);

(an & is not given with fname since fname will be defined as a string and the

name of the string denotes its address)
4, scanf (“%u",&n);

The value of n can be given upto 65535.
5. scanf (" %[abcdef]”, address);

Principles of Programming and Algorithm 4 »>8 Built —in Operators and Function

This will read the input characters as long as the input characters are in the
search set, abcdef.

6. scanf ("%[abc]" , address);
If the input given is Mumbai, only Mum will be stored in address since b is in
the search set.

7. scanf (“%d%][/-] %d%}/-] %d" &date , &separator, &month , &separator , &year);
If the date is entered as : 31-12/2000 , the values assigned are

date 31
separator -
month 12
separator /
year 2000

8. scanf ("%d * [/-] %d % * [/-] %d", &date, & month &year)
Here, the suppression character * is used which will skip a / or — (i.e not assign
them to any argument)
9. printf(” %d", scanf("%d%s", &a, str});
If the values given are 10 and Hello, the outputis 2.

] CONCEPT OF HEADER FILES

C language offers simpler way to simplify the use of library functions to the
greatest extent possible.

This is done by placing the required library function declarations in special source
files, called header files. Most C compilers include several header files, each of which
contains declarations that are functionally related.

<stdio.h> is a header file containing declarations for input/output routines;
<math.h> contains declarations for certain mathematical functions and so on.

The header files also contain other information related to the use of the library
functions, such as symbolic constant definitions.

The required header files must be merged with the source program during the
compilation process.

This is accomplished by placing one or more #include statements at the beginning
of the source program.

The other header files are:
<ctype.h> character testing and conversion functions.

<stdlib.h> utility functions such as string conversion routines , memory
allocation routines, random number generator, etc

<string.h> String manipulations functions.

<time.h> time manipulation functions.

Principles of Programming and Algorithm 4 »9 Built —in Operators and Function

4.7 WHAT IS A PREPROCESSOR?

A Preprocessor is a program that processes or analyzes the source code file before
it is given to the compiler.

It performs the following tasks.

1. Replaces trigraph sequences (not covered in this book) by their equivalents.
Trigraph sequences are used to handle non ASCII characters sets.
il Joins any lines that end with a backslash character into a single line.

lii. Divides the program into a stream of tokens.

lv. Remove comments, replacing them by a single space.

v. Processes preprocessor directives and expands macros.

V1. Replaces escape sequences by their equivalent internal representation.
vii. Concatenates adjacent constant character strings.

C source code
.C

C
preprocessor

Are

N - Object . Executable
there preprocessor Compiler > Linker
directives? code code
modified/
expanded
code
preprocessor
performs necessary
action
Figure 4.1

4.8 PREPROCESSOR DIRECTIVES

Preprocessor directives are special instructions for the preprocessor.
1. They begin with a # which must be the first non-space character on the line.
11 They do not end with a semicolon.
. Each preprocessing directive must be on its own line.

Preprocessor directives come under three categories
1. Macro substitution directive.

2. File inclusion directive

3. Conditional compilation directive

Principles of Programming and Algorithm 4 »10 Built —in Operators and Function

4.7.1 Macro substitution directive

A macro is a small subprogram which contains executable code and is similar to a
function. Wherever a macro name occurs in a program the preprocessor substitutes
the code of the macro at that position (unlike a function). The execution is faster
since time is not wasted in function call and return.

Q. Simple substitution macro
[#define macro- id value |

#define is a preprocessor directive that defines an identifier and a value that is
substituted for the identifier each time it is encountered in the source file.

We have already used this directive to define symbolic constants.
The identifier is usually written in uppercase to distinguish it from other variables.

. A second #define for the same identifier is erroneous unless the second value
is exactly identical to the first.

. Use of macros enhances readability of the program.
Examples

1. #define PI 3.142

il #define TRUE 1

ili. #define AND &&

iv. #define LESSTHAN <

V. #define GREET printf (“*Hello”);

vi. #define MESSAGE “Welcome to C”

vii. #define INRANGE (a >= 60 && a<70)

Every occurrence of the macro-id in the program will be replaced by its
corresponding value.
Example
int a = 50;
if (INRANGE)
printf (“*First class”);
b. Argumented Macros

An argumented macro is also called a function macro. The macroname can have
arguments. Each time the macroname is encountered, the arguments associated with
it are replaced by the actual arguments found in the program.

Advantage

1. Their arguments are not type sensitive. Therefore we can pass any numeric
variable type to an argumented macro that expects a numeric argument.

2. Argumented macros execute much faster as compared to their corresponding
functions.

Example

i.
#define HALFOF (x) ((x)/2)
result=HALFOF (10) ;

Principles of Programming and Algorithm 4 » 1 Built —in Operators and Function

The occurrence of HALFOF is replaced by
Result =((10 /2));
The reason for enclosing x in () is that the parameter could also be an expression

in which case, the expression has to be first evaluated. If it is not enclosed in (), it
may yield wrong results.

Example

result = HALFOF (10+2);
This will be evaluated as

result = ((10+2) /2);:

Thus giving the correct result. If no brackets are used, it would evaluate to
result = (10+2/2);

thereby giving the wrong result.
ii.
#define LARGER(X,Y) ((x)>{y)?2(x):(y))

jii. All the parameters of the macro must be used in the substitution value, i.e.
#define ADD(x,y,z) ((x)+(y))

is invalid because Z is not used. The correct macro is

#define ADD(X,VY.2) ((x)+(y)+(2))
iv.

#define SQUARE(X) ((x)*(x))

V.

#define STREQL(sl,s2) (strcmp((sl), (s2)==0)
if(STREQL(Strl,StI‘Z)

<. Nested Macros

A macro name can be contained within another macro. This is called nesting of
macros. ’

Example

i.
#define CUBE(x) (SQUARE(x)*(x))
#define MAX(a,b,c) LARGER{LARGER (a,b), c)

Macros versas fanctions

i. Macros are small and do not usually extend beyond one line. They are used
when the code is relatively short.
ii. Since the macro is replaced by its code, if a macro occurs many times, the final

program contains the expanded code of all the macros; thereby increasing
program size.

In contrast, a function code appears only once. A function has space advantage
over a macro.

Principles of Programming and Algorithm 4 »12 Built —in Operators and Function

iii. When a function is called, a certain amount of processing is required to pass
control to the function code and return control back to the calling program.
This takes a finite amount of time.

This does not occur for a macro because the macrocode is put into the program.
Therefore, a macro has a speed advantage over a function.

4.7.2 File inclusion directive

The file inclusion directive is the one that begins with #include. We have already
used this directive a number of times.

This directive instructs the compiler to include the specified file i.e. it replaces the
entire contents of the file at that position.

Syntax
#include<filename>
OR
#include“filename”
. In the first format, the file is searched in standard directories only.
o In the record, the file is first searched in the current directory. If it is not found
there, the search continues in the standard directories.
. Any external file-containing user defined functions; macro definitions etc. can
be included.
. An included file can include other files.
Example

/*group.h */
#include <stdio.h>
#include <math.h>
#include "“myfile.c”
#define PI 3.142
/* mainprog.c*/
#include “group.h”
main()

{

}

4.7.3 Compiler Control Directives /| Conditional
Compilation

Several directives allow compilation of selective portions of the program's code if
certain conditions are met. These are,

#if

#else

Principles of Programming and Algorithm 4 »13 Built —in Operators and Function
#elif
#endif

They work similar to the if else statement in C. The different formats in which they
can be used are as follows

i.
if expression

statement_block
endif

ii.

#if expression
statement_blockl

#else
statement_block?2

#endif

iii.

#if expression
statement_blockl

#elif expression
statement_block?2

#elif expression
statement_block3

#else
default statement_block;

#endif

If the constant expression is true, the statement block is compiled otherwise it is
skipped and goes to the #else part (if it exists)

Examples

i.

#define MAX 10
main()

{ #if MAX>99
/* Code for larger array */
#else
/*Code for smaller array */
#endif

ii.

#if BACKGROUND==
#define FOREGROUND 1
#elif BACKGROUND==
#define FOREGROUND O

#tendif

Principles of Programming and Algorithm 4 »14 Built —in Operators and Function

Another method for conditional compilation is the use of #ifdef, #ifndef

#ifdef means if defined and #ifndef means if not defined.

In case of a large C program, many macros are defined in various files so it is
difficult to remember if a particular macro has been defined or not. In such a case we
can check for its definition using the above two macros.

¢ Redefining an existing macro is erroneous
* Un-defining a non existent macro is also erroneous.

So the definition of a macro has to be first checked for.

The syntax is

#1fdef macro-id
statement_block
#endif

#ifndef macro-id
statement_block
#endif

Example

#include “declare.h”
#ifndef FLAG

#define FLAG 1
#endif

Un-defining @ macro

A macro can be undefined using the # undef directive.
Example #ifdef FLAG
#undef FLAG
#define FLAG 0
#endif

#ifdef and #endif can be used to compile and run debugging code in the program.

Example #define DEBUG 1
main()

{ _

#ifdef DEBUG

/* debugging code put here */
#endif

— 1

Another important use of conditional compilation directive is when a program has
to be run on different machines. In such a case, the common part of program can be
run and the machine dependent program part can be conditionally compiled as
shown below.
main()
{ #ifdef IBM-Pc

{ code for IBM-Pc}

Principles of Programming and Algorithm 4 »15 Built —in Operators and Function

#else
{ code for HP machine}
#endif }

SOLVED PROGRAMS

1. Let us write a program to accept temperature in °C and convert it to °Fahrenheit

9
using formula temp- in- °F = 5" temp-in- °C +32.

[]
g‘ I* This program converts temperature in degree Centigrade to Fahrenheit */
#include<stdio.h>
main ()
{
float centigrade, fahr,; /* declarations*/
printf (“Enter the temperature in Centigrade :7);
scanf (“%f”, &Centigrade); /* accept input */;
fahr = (9.0/5) * centigrade + 32;
printf (“*\n temperature in Centigrade = %f”, centigrade);
printf (“ \n temperature in Fahrenheit %f” , fahr); .
}

Output
Enter the temperature in centigrade: 37
Temperature in centigrade = 37
Temperature in Fahrenheit = 98.599998

2. Write a program to calculate the distance between two points, using formula.

d = \[(Yz'Y1)2+(X2'X1)2

/*To calculate the distance between two points whose coordinates are
(x1,y1)and (x2,y2) */

#include<stdio.h>
#include<math.h>
main{)
{ int x1, x2, yl, v2 ;
float 4&;
printf (“Enter the coordinates of the first point:"“);
scanf (“%d%d”, &x1l,&yl);
printf (*Enter the coordinates of the second point:”);
scanf (“%d%d”, &x2,&y2);
d = sqgrt((y2-yl)*{y2-yl1)+ (x2-x1)*(x2-x1));
printf (“The distance is %1f”,d);

Principles of Programming and Algorithm 4 > 16 Built —in Operators and Function

Output
Enter the coordinates of the first point:10 0
Enter the ccordinates of the second point : 0 10

The distance i1s 14.142136

3. Program to convert time in seconds to equivalent hours, minutes, and seconds.
I
== /* This program converts seconds to hours, minutes and seconds*/

#include<stdio.h>
/* Define constants */
#define SECONDS_PER_MIN 60
#define MINS_PER_HOUR 60
main ()
{unsigned int seconds, minutes, hours, seconds_left, mins_left;
printf (“Enter the number of seconds :”);
scanf (“%u”, &seconds);
hours = seconds /(SECONDS_PER_MIN * MINS PER_HOUR) :
minutes = seconds / SECONDS_PER_MIN;
mins_left = minutes % SECONDS_PER_MIN;
seconds_left = seconds % SECONDS_PER_MIN;
printf (*%u Seconds are equivalent to : “ seconds):
printf (“%u hrs %u mins %u seconds“,hours, mins_left,
seconds_left);
J

LJ
Output a
Enter the number of seconds : 60
60 seconds are equivalent to : 0 hrs 1 mins 0 seconds
Output b

Enter the number of seconds : 20000
20000 seconds are equivalent to : 5 hrs 33 mins 20 seconds

rcises

A. Select the Appropriate Answer

1.

main{)
{ int 1i;
printf(*%d”, i);

a. error b. garbage
c. 0 d. 32767

Principles of Programming and Algorithm 4 »17

Built —in Operators and Function

2.
main()
{
}
a. 2
c. 1
3.
main ()
{
}
a. 0
c. 34
4.
mainf{)
{
}
a
c.
3.
main ()
{
}
a.
c.
6.
main ()
{

float j =

printf(*% d”, sizeof(i+j));
b. 4
d. 30

int i,

i = 0x10 + 010+10;
printf(*%d4”, 1i);

b. error
d. garbage
char c¢h = ‘ABC’;
printf(“%c”, ch):
error b. ABC
A d. ch
printf (“\nH\ne\nll\ro”);

N H
I b. e
0]
0
Hello d O
int 1 = 10 , a ;
a = 1++ / ++1 ;
printf(*sd ..%d” ,a , i);
1...12 b. 10....10

error d. compiler dependent

Principles of Programming and Algorithm 4 »18 Built ~in Operators and Function

7.
main{)
{ int 1 = 10 , j = 20;
i ~=j ; 3%=i; i"=3;
printf(*%d, ,%4d” ,i.3);
}
a. 10....10 b. 10....20
¢. 20....10 d. 20...20
8.
enum colors{BLACK, BLUE, GREEN };
main()
{ printf(“%d..%d..%d”, BLUE , GREEN , BLACK);
}
a. error b. Blue, Green Black
c. 0...,1....2 d. 1..2..0
9. " The stock’s value decreased by 10 %"

Which of the following exactly reproduces the above message?

a. printf(" The stock's value decreased by 10 %");

b. printf(* \" The stock\'s value decreased by %d \ % \.\"\n", 10);
C. printf(“\" The stock\'s value decreased by % d %%.\ “\n" , 10);
d. None of the above.

B. Predict the outputs

1.
main ()
{ int a = 300 * 300 , b;
b = as2;
printf(* %d %4”, a,b);
}
2.
main()
{ char ch = 'A’;
int 1 = 2 ;
float £ = ++ch+i ; }
printf (*%$£%d%c”, £ , ch, ch);
3.
main ()
{ int x = 12 , y;
Yy = X--;
Yy - =--X;

printf (“%d%d” ,x,y);
}

Principles of Programming and Algorithm 4 »19 Built —in Operators and Function

4.
main{)

{ int a =5, b = 10 :
printf(* %$d\n”, a++ + b++ + ++a + ++b) ;
a=5,; b= 10;
printf(* % d \n “ , ++a * ++b) ;
a=5,;b=10 ;
printf(* %d\n“, a = ++a * ++ b)

}

S.
main()

{ int Float = 2 , pi = 3.14;
printf (“%£f%£f”, Float , pi);

}

6.
main{)

{ int 131,

i = 32000 + 1536 + 10 * 0,
printf(*%d”, i);
7.
main()
{ int x,vy,z;
X =y =2 = -1;
Z = 44X && ++y || ++z;
printf(*x = %d, y = %d, z = %d~, X,¥.2);
8.
- main()
{ char ¢ = ‘z’',¢ch ;
cC =c¢c +'a’'-‘A ’;
ch = ¢ -‘a’+'A’;
printf(“%c”,ch };

}

9.

main{)
{ int i = 10,5 ;

printf(*%d~,i);

}

10.

mein()

{ conue int x;

*x = 130;

printf (“%d”,x);
}

Y

Principles of Programming and Algorithm 4 » 20

Built ~in Operators and Function

11.

#define GREAT
main{)

{ printf (GREAT);
}

w XYZ ”

12.

#define GREET HELLO
main()

{ printf (GREET) ;

}

13.
main() ‘ o
{ #include <stdio.h>

}

14. , B
#define MAIN main()
#define BEGIN

#definé END
} o .
#define GREET printf(“*Hello”)
MAIN -

BEGIN

GREET;
) END

15.

#define SQUARE(x) (x*x)

main ()

{ int i1 = 20, 3j=10,k;
k = SQUARE(i-3Jj)
printf (“%d”,k);

}

16.

#define SQUARE (x) (x)*(x)

main()

{ int 1 = 20,3=10,k;
k = SQUARE({1-7j);
printf (“%d”, k) ;

}

17.

#define FLAG

#ifdef FLAG
int 1 = 10;

#endif

main()

{ int 1 = 5;
printf(*%d”,1i);}

Principles of Programming and Algorithm 4 > 21 Built —in Operators and Function

18.

/*File abc.h */
printf (“Hello") ;

/*File my.c */

main{)

{ #include “abc.h”
printf(*C”);

}

19.

/*File xxx.h */
printf(“Hello”)

/*File my.c */

main{)

{ #include “xxx.h”

printf(cr);
}
C. Programming Exercise
1. Find the roots of a quadratic equation using the formula,
-b + 4/ b?- 4ac)
7a Accept values such that b* > 4ac.
2. Accept the basic salary of an employee and calculate and display the following.

Dearness Allowance (DA) = 150% of basic
Income Tax (IT)= 30% of basic.

Provident Fund (PF) = 8.33% of basic.
Net Salary = Basic + DA - (IT + PF)

3. Accept two numbers and interchange their values.

4. Given the three sides of a triangle, calculate its area using \/ s {s-a) (s-b) (s-¢)
where a,b and c are the three sides and s is the perimeter.

5. The frequency of an electrical circuit is

/ 1 R?
F = 1C -2 *Write a program that accepts Inductance (L) Capacitance

(C) and Resistance (R) of the circuit and calculate its frequency.

5. Witz a program to accept a character from the keyboard and check if it is an
alphabet, digit or special symbol. If it is an alphabet, check if it is uppercase or
lowercase. If uppercase, convert if to lowercase & vice-versa.

Principles of Programming and Algorithm 4 » 22 Built —in Operators and Function

D. Review Questions
1. Explain the functions getchar and putchar with examples.
2. Explain the format specifiers used with the printf functions.
3. Explain search sets in the scanf function with examples.
4. Is there a difference between:
printf (“Hello") ; printf (“World"};and
puts ("Hello"); puts ("World");
5. What is the difference between getch() and getche() ?
0. What format specifiers are used with scanf ?
7. Write a note on the C Preprocessor.
8. Explain Macro substitution in brief with examples.
9. When an argumented macro is defined, why should each argument be enclosed
in parentheses?
10. Do header files need to have a .h extension?
11. TIlustrate the use of #ifdef and #undef with examples.
12. Explain any four preprocessor directives.

CONTROL STRUCTURES 5

5.1 INTRODUCTION

In the previous chapters, we have studied some basic input output functions. We
have also seen the different types of C statements. In this chapter, we shall be
studying the program control statements, which specify the order in which
instructions are executed.

Sometimes, it is necessary to alter the sequence of execution of statements based
on certain conditions or we may require some statements to be executed repeatedly
until some condition is met. This involves decision-making, and looping. In addition

we shall also be studying the jump statements, which allow breaking out of decision
and loop control statements.

%] SELECTION / DECISION MAKING
STATEMENTS

Many programs require testing of some conditions at some point in the program
and selecting one of the alternative paths depending upon the result of the condition.

C provides three mechanisms to check for conditions and execute or skip certain
parts of the program. The three decision-making statements are:

1. if statement

2. if-else statement

3. switch statement

5.2.1 if statement

This is the simplest form of decision-making statements in C. It allows decisions
to be made by evaluating an expression. Depending upon the result (True or False),

the program execution proceeds in one direction or another. Basically it is a two-way
decision statement.

The simplest form is:

if (expression)
statement

5>»1

Principles of Programming and Algorithm 5»2 Control Structures

Note: Here, statement could be either a single statement or a black of statements

(enclosed in braces) as shown below. Henceforth, we shall use Statement to imply
both.

if (expression)
statement;

.single statement

if (expression)

statements;

more than one statement

The keyword if must be followed by a set of parentheses containing a single
expression to be tested. The statement is executed only if the expression is true (i.e.
non-zero). If the condition evaluates to false, the statement is skipped.
if statement

- w.— — = o

expression

statement (s)

1
i

1

1

]

|

1

True 1
1

'

]

1

t

1

1

Figure 5.1

Example
i.

if(n < 0)
printf (*The number is negative”) ;

ii.

if(age < 30 && salary >10000)
printf (*You are young and rich !'!“);

iii.

if((n ¥ 3 ==0) & (n % 5 == 0))
printf (*The number is divisible by 3 and 5");

Principles of Programming and Algorithm 5>»3 Control Structures

iv.
if (basic_sal > 10000)
{
it 30.0 * basic _ sal / 100;

da 200.0 * basic_ sal / 100;
hra = 800.0 ;

5.2.2 if Else statement

The ‘if’ statement will execute the statement if the expression is true otherwise it
will be skipped.

However, in many cases we require an alternate statement to be executed if the
expression evaluates to false. This is possible using an ifelse statement.

The general form is,

if (expression)

statementi
else

statement?2

Here, the expression is evaluated. If it is true, statement1 is executed and if it is
false, statement2 is executed. Thus, either statementl or statement2 will be
executed; never both.

if else statement

statement1 statement2
S S |
Figure 5.2

Examples
1.
if(a >b)

printf(“a is larger”);
else

printf(“b is larger”);
2.
if(year % 4 == 0 && year % 100 != 0 || year % 400 == 0)

printf(*%d is a leap year”, year);

else

printf(*%d is not a leap year”, year);
This can also be written using the conditional operator ?:
{year %4 == 0 && year % 100 != 0 || year % 400 == 0) ?
printf (“leap”): printf (“Not Leap”);

Principles of Programming and Algorithm 5>»4 Control Structures

3.
if (number % 2 = = 0)

printf (*The number is even”);
else

printf (*The number is odd”);
4

if(basic_sal < 10000)
{

it = 20 * basic_sal / 100;
da = 150 * basic_sal / 100;
hra = 500;

}

else
{it 30 * basic _sal/100;

da 200 * basic_sal / 100;
hra = 800;
} .
5.2.3 Nested if ...else statements

As seen earlier, the if clause and the else part may contain a compound statement.

Moreover, either or both may contain another if or ifelse statement. This is
called as nesting of ifelse statements.

This provides a programmer with a lot of flexibility in programming. Nesting
could take one of several forms as illustrated below.

i
if (expressionl)
statementl
else
if (expression 2)
statement2

ii.
if (expressionl)
if (expression2)
statementl
else
if (expression3)
statement2
iii.
if (expressionl)
if (expression2)
statementl

Principles of Programming and Algorithm 5»5 Control Structures

else
statement?2
else
statement3
iv.

if (expression 1)
statement 1

else
if (expression 2)
statement 2
else
statement 3
v,

if (expressionl)
if (expression2)
statementl
else
statement?2
else
if (expression3)
statement3
else
statement4

Examples
i.

if(a >b)
if (a > c¢)
printf(“a is largest”);
else
printf(“c¢ is largest”)

else
if(b > ¢)
printf(*b is largest”)
else
printf(*c is largest”);
ii.
if ((ch >= 'a’ && ch <= 'z’) || (ch > 'A’ && ch <='Z‘’))
printf(* %c is an alphabet” , ch):;
else

if (ch >= ‘0’'&& ch< ='9')

printf(*%$c is a digit”, ch) ;

else

printf (%c is a special symbol”, ch) ;

Note: It is a good idea to enclose each of the 'if' and ‘else’ blocks in braces if the
logic is complex.

Example: A recruitment agency recruits candidates satisfying the following
conditions.

Principles of Programming and Algorithm 5>»6 Control Structures

1. If the candidate is male, between 25 and 30 years of age, height above 160 cm.

ii. If the candidate is female, between 20 and 25 years of age with height above
155 cm.

The if-else construct for the above can be written as follows:

if(sex == 'M’')
{
if (age >= 25 && age <= 30)
if (height > 160)
printf (“Candidate is recruited”);
}
else /* Candidate is Female */
{
if (age >= 20 && age <= 25)
if (height > 155)
printf (*Candidate is recruited”);
}
Note: else always gets associated with the nearest if statement. Hence { } should
be used to associate the else with the correct if.

5.2.4 The else - if ladder

If there is an if else statement nested in each else of an if- else construct, it is
called an else — if ladder as depicted below.

if (exprl)
statementl;
else
1f (expr2)
statement?2;
else
if (expr3)
statement3;
else
statementd;

This can also be written as

if (exprl)
statementl;
else if (expr2)
statement?2;
else if (expr3)
statement3;
else
statement4;

The conditions (expressions) are evaluated from the top downward. As soon as a
true expression is found the statement associated with it is executed and the rest of
the ladder is bypassed. If none of the expressions are true, the final else is executed.
The last else often acts as a default condition i.e. if all other tests fail, the last else
statement is executed.

If it is not present, no action takes place if all other conditions are false.

Principles of Programming and Algorithm 5>»7 Control Structures

Examples

1. To check whether a character entered from the keyboard is an alphabet, digit,
a special symbol or punctuation mark.

if (isalpha(ch)/*ch is the character variable storing the
character */
printf (11%C is an alphabet”,ch);
else
if (isdigit(ch))
printf(“%c is a digit”, ch);

else
if (ispunct{ch))
printf (“%c is a punctuation mark” , ch);
else

printf{ %c is a special symbol”, ch);

2. To find class of a student from the marks.

if (marks >= 70)
printf (*Distinction”);

else if (marks> = 60)
printf(“First class”);
elgse if (marks> = 50)

printf (*second class”);
else 1f (marks>=40)
printf (*Pass class”);

5.2.5 The switch statement

Whawwnmmofmmwahanmw%iMDbe%MdaLn%%dﬁ—ebeﬁ&mmmm
can be used. However, the structure becomes very complicated and the code
becomes difficult to read and trace.

For these reasons C has a built-in multiple-branch decision statement called
switch. This statement tests whether an expression matches one of a number of
constant integer values and branches accordingly.

The format is
switch (expression)

{

case const-exprl : statement
case const-expr2 : statement
case const-expr3 : statement
default : statement

}

As mentioned before statement implies a single statement or a compound
statement.

Principles of Programming and Algorithm 5>»8 Control Structures

* The expression enclosed within parentheses (integer expression) is
successively compared against the constant expression (or values) in each
case. They are called case labels and must end with a colon (:)

* The statement in each case may contain zero or more statements. If there are
multiple statements for a case they need not be enclosed in braces.

e All case expressions must be different.

e The case labeled default is executed if none of the other cases match. The

default case is optional and if not included , no action takes place at all if none
other match.

* Cases and the default case can occur in any order.

¢ More than one case value may be associated with a particular statement.

L]

‘Q—‘ /* Use of switch statement */

#include<stdio.h>

main()

{ int number ;
printf (“Enter a number between 1 and 3 ") ;
scanf (*%d”, &number) ;
switch (number)

{
case 1 : puts(“you entered 1\n”):;
case 2 : puts(“You entered 2\n”);
case 3 : puts(“You entered 3\n”):
default : puts(“Out of range\n”);
}
}
(]
N
Output

Enter a number between 1 and 3:2

You entered 2

You entered 3

Out of range

However, this is not the required output. The output is like this because when a
match occurs, not only the statement associated with the matching case is executed

but those of all the remaining cases are also executed. Using a break statement can
solve this problem.

Use of break statement

The break statement is used to exit a control structure. As soon as a break
statement is encountered, program control is transferred to the first statement outside
the structure to which the break belongs.

In the above program, if a break statement is included in every case, as soon as a
match is found, the statement(s) of the matching case will be executed and the break
statement will take control outside the switch statement as illustrated below. The

default case need not have a break statement since it will the last case executed if no
others match.

Principles of Programming and Algorithm 5»9 Control Structures

Example

2

<= TIllustration of switch using break
#include<stdio.h>
main()
{int number;
printf (“Enter any number between 1 and 3 :”);
scanf (*%d4d”, &number) ;
switch (number)
{
case 1 : puts(“You entered 1\n*);

break;
case 2 : puts(“You entered 2\n");
break;
case 3 : puts(“You entered 3\n");
break;
default : puts(“Out of range.\n”);
}
} L
===
Output a

Enter any number between 1 and 3:2
You entered 2

Output b

Enter any number between 1 and 3:10
Out of range.

Note: To associate more than one case value with a particular statement, you have
to simply list the multiple case values before the common statement (s) that are to be
executed. This is called-falling through cases.

Examples
1.
switch (operator)
{
case ‘*’
case ‘X’ : result = valuel * value2;
printf (“%f”, result);
break;
-}
2.
switch {(c)
{ case ‘0’ : case ‘1’ use: case ‘2’ : case ‘3':
case ‘4’ : case ‘5’ : case ‘6’ : case ‘7':
case ‘'8’ : case '9‘': digit ++ ; break ;

case ‘' ' : case \n : case ‘\t’ : white_space + + ; break;}

Principles of Programming and Algorithm

5»10

Control Structures

Nested ‘switch’ statement

It is possible to have a switch statement as a part of a statement in another switch
statement. Even if the case constanis of the inner and outer switch contain common
values there is no conflict. Example

switch (x)
{ case O printf (“*Invalid value”);
break;
case 1 switch (vy)
{ case 0 printf (“values are 1 and 0");
break ;
case 1 printf (“values are 1 and 1”);
break; }
break:;
case 3
}

Comparing if-else and switch statements

Although both these statements can be used for multi-way decision-making, there
are some differences between the two, which are crucial for the selection of one of
these in a program.

No. If —else structure Switch statement
| The if-else structure allows only two-way | Switch allows multi-way branching
branching from a single expression from a single expression.
Statement 1 Case value 1
i. True Case value 2
if (expression) switch (expr) .
False .
Statement 2 default
i The nested if-else structure is nonelegant and | Switch statement is very elegant and
* | complicated easier to write.
If multiple alternat.lves exist, th9 pestlng can go to No such problem occurs using a
ili. ! many levels and it becomes difficult to match the . '
. A switch statement !
else part to its corresponding if.
iv. | Debugging becomes difficult Tracing of errors and debugging is
easy.
The test expression can pe a congtant expression Only constant integer expressions
v. | or an expression involving relational or logical
and values are allowed.
operators. Float and double are also allowed.
vi Multiple statements within if or else have to be | The statements belonging to a case
" | enclosed in braces. need not be enclosed in braces.
5.2.6 Conditional operators

The ternary operator? :
seen how this operator works. The general form is

exprl?

expr2 expr3

can also be used for decision-making. We have already

If exprl is true, the entire expression takes the value of expr2 else it takes the
value of expr3.

Principles of Programming and Algorithm 5>»M1 Control Structures

Examples

1.

char ch;

ch = getchar();

x = (ch >= 65 && ch <= 90) ? 1: 0;

x? puts{“Uppercase alphabet”) :puts(“Other character”);

This piece of code checks if character ch is an uppercase alphabet.

2. The following statement assigns the largest of three numbers (a,b,c) to x.

x={({a>by?(a>c)?a:¢c : (b>c)?b:c;

5.3 ITERATIVE STATEMENTS (LOOP
CONTROL STRUCTURE)

A segment of program code that is executed repeatedly is called a loop. The
repetition is done until some condition for termination of the loop is satisfied.

A loop structure essentially contains
L a test condition

i, loop statement(s)

The test condition determines the number of times the loop body is executed. It
involves evaluating-a loop control variable(s), whose value has to change within the
loop body so that the loop execution can terminate.

The iteration proced:ure takes place in four steps.

e Initializing the loop control variable.

¢ Execution of loop statements

e Changing the value of the control variable

¢ Testing the condition.

Depending upon when the loop condition is tested, loops can be of two types:

1. Top-tested loop (entry controlled loop)
2. Boitom tested loop (exit controlled loop)
In an entry-controlled loop, the condition is evaluated before the loop body is

executed. In the bottom tested or exit controlled loop, the condition is tested after the
loop body is executed.

Principles of Programming and Algorithm 5 »12 Control Structures

A

N
Loop body

Test
condition

A

False
Top-Tested or Entry Bottom Tested or Exit
controlled loop controlled loop
Figure 5.3

The C language provides three loop structures for use in programs.

1. while statement

2. do...while statement

3. for statement

5.3.1 The while statement

The while loop is the simplest loop structure. It is often used when the number of
times the loop is to be executed is not known in advance but depends on the test
condition.

It is an entry-controlled loop i.e. the condition is tested before the loop body is
executed.

The syntax of the loop is:
while (expression)

statement

The expression is the test conditions and can be any valid C expression.
The statement can be a single or compound statement.
How it works?

s The expression is evaluated and the statement (loop body) is executed as long as
the expression is TRUE (non zero)

e As soon as the expression evaluates to false, the execution of the loop body is
stopped and control is transferred to the first statement outside the loop body.

¢ Since it is an entry-controlled loop, if the expréssi_on evaluate to false the first time
itself, the loop body will not be executed even once:

Principles of Programming and Algorithm 5 >»13 Control Structures

Example: Program displaying all even numbers below 50.

/* Demonstration of a simple while loop */
#include<stdio.h>
main{()
{ int even_number = 0; /* Initialization */
while(even_number < 50) /* Loop condition */
{
printf(“%d \n~, even_number) ; /*Display */
even_number = even_number+2; /*change value of loop variable*/

Points to remember

* The loop control variable(s) must be initialized (i.e. given some value before the
condition is tested)

* The loop body must contain a statement to alter the value of the control variable.

Examples

1. Calculate the sum of numbers from 1 to n (user specified) i.e. 1+2+3+. . .+n.

/* Illustrates while loop */
#include<stdio.h>
main() »
{int sum = 0, n, loop_var =1; /* Initialization*/
printf (“*enter the value of n : “);
scanf (“%d”,&n) ;
while (loop_var < = n)
{
sum = sum + loop_var;
loop_var++:
}
printf(*\n The sum of numbers from 1 to %d is %d”, n, sum);
}

=

Principles of Programming and Algorithm 5>»14 Control Structures

2. To accept characters from the keyboard till the user enters * and count the total
number of alphabets entered.

#include<stdio.h>
main()
{
char ch;
int counter = 0;
ch = getchar();
while(ch t='*")
{ if (isalpha(ch)) /* check if ch is an alphabet */
counter++ ; :
ch = getchar(); /* alter value of loop variable */

/* Get the first character */

}
printf (“*Number of alphabets are %d”,counter);}

The loop can be written in another way as shown:

while((ch= getchar()) !='*")
{
if (isalphal(ch))
counter++;
| L

=

Here, ch = getchar() is enclosed in () because != has higher precedence over =.

The character has to be read first and then compared. Hence the ().

3. Accept numbers, as long as user says 'y’ and calculate their sum

@_ /* Program to accept numbers, from the keyboard as long as the user says

v 'y’ and find their sum */

#include<stdio.h>

main()
{ char ans = 'y’';
int sum = 0 , num;
while (ans == ‘y’)
{ printf (“*enter the number :");
scanf (“%d”, &num);
sum = sum + num ;
printf (*\n do you want to continue (y/n);”);
ans = getchar();
}

printf (*\n The sum is %d”, sum);

Principles of Programming and Algorithin 5 >»15 Control Structures

4. “To find sum of digits of an integer.

/* Program to accept an integer and calculate the sum of its digits */

#include<stdio.h>

main{)

{ int number, sum = 0 ;
printf (“Enter the number : “);
scanf (*%d”, &number) ;
while (number > 0)

{
sum = sum+ (number%10);/*Add the last dlglt of number to sum */
number= number /10 ; /* Get the remaining digits in number */
}
printf(*\n The sum of digits is %d" sum);
} —
L]
[
Output
Enter the number: 327
The sum of digits is 12
5. To reverse a number

Q /* Program to reverse a number i.e. if user enters 324, the output should be
423/

#include<stdio.h> '
main()
{ int num , rev_num = 0;

printf (“Enter the number to be reversed ”);

scanf (“%d”, &num) ;

while (num>0)

{

rev_num = rev_num * 10 + (num % 10);

num = num /10;

}

priutf(“In The reversed number is $d” rev_num);

}

=
L

Output
Enter t»e uber to be reversed 5678
The reversed number is 8765.

Nested *whiie’ statement

sl

sus. tike the if' statement, while statements can also be nested. Nesting of loops
frans a loop that is contained within another loop.

while {exprl)
{

while (expr2)

Principles of Programming and Algorithm 5 »16 Control Structures

{ .
loop body of while (expr2);
}

}

Nesting can be done upto any levels. However the inner loop has to be completely
enclosed in the outer loop. No overlapping of loops is allowed.

Nesting of loops is required in many'programming exercise like multidimensional
arrays etc.

Example Program: To display the following structure
1

1 2
1 2 3
1 2 3 4

ie. 1to n rows and numbers from 1 to n in the n® row.

i}

#include <stdio.h>
main{)
{ int n , line_number , number;
printf (*How many lines: ");
scanf (“%d, &n) ;
line_number = 1 ; /* Initialize line number */
while (line_number <=n)} /* line number goes from 1 to n */
{ number = 1 ; /* display begins from 1 */
while (number <= line_number)
{ printf (“%d\t”, number);
number++; /* next number */
}

printf (“\n”);
line-number++

/* Program to display triangle of numbers */

; /* next line*/

In the above program, the outer while loop is for the lines from 1 to n. For each
line, we have to print numbers from 1 to the line numbers. This is done by the inner

loop. 1ie. for every value of line-numbers, number takes values from 1 to
line_number.

5.3.2 The do-while loop
The second iteration statement provided by C is the do-while statement.

The while loop seen earlier is top-tested i.e. it evaluates the condition before
executing any of the statements in its body. The do-while loop, on the other hand, 1s
a bottom-tested or exit controlled loop i.e. it evaluates the condition after the

Principles of Programming and Algorithm 5 > 17 Control Structures

execution of statements in its construct, This means that the statement within the
loop are executed at-least once. :

The syntax is

do
{ statement}
while
(expression) ;

The statement (single or compound) is executed as long as the expression is true.

Note the ; following the while.

The sequence of events is:

1. The statement(s) in statement are executed.

2. Expression is evaluated. If it is true, execution returns to step 1. If it is false,
execution of the loop terminates,

Example

do

{ printf(*\n 1 - Add a record”) ;
printf(*\n 2 - Delete a record”) ;
printf(*\n 3 - View Records”) ;
printf(*\n 4 - Quit”):
printf (*\n Enter your choice: “);
scanf (*%$d” &choice);
switch (choice)

case 1 : add();

break;

case 2 : delete();
break ;

case 3 : view();
break;

case 4 : printf(“Bye”):;

}

}while (choice!=4):;

The above program code shows a do while loop, which displays a menu and
accepts a choice.

"In this case, we want the menu to be displayed and choice to be accepted at least
once and so a do_while loop is preferred.

Principles of Programming and Algorithm 5> 18 Control Structures

5.4 THE FOR LOOP

The for loop is very flexible, powerful and most commonly used loop in C. 1Itis
useful when the number of repetitions is known in advance.

This is a top-tested loop similar to the while loop but the advantage is that it
combines the initialization test condition and loop variable alteration statement in a
single statement.

The syntax is:

for (exprl ; expr2 ; expr3)
statement

where exprl is the initialization expression
expr?2 is the test condition
expr3 is the update expression
These three expression have to be separated by semicolon (;).

The above loop is equivalent to

exprl;

while (expr2)

{ statement
expr3;

}
Execution of a for loop

e exprl is evaluated only once ie at the beginning. This expression periorms
initialization of the loop control variable (Multiple initializations can also be done
as seen later)

e expr? is the test expression, which is evaluated before execution of statements in
the loop. The statements are executed only if the test expression is true. If it is

false, the loop execution terminates. Note that there can be only a single test
expression.

e expr3 is the update expression, which alters the value of the loop control variable.
for (Expr 1; Expr 2 ; Expr 3)

Execution of for
Example:

for (i= 1 ; 1 <=100 ; i++)
printf (*%d \n” ,1);

i = 1 — initialization

Principles of Programming and Algorithm 5 >»19 Control Structures

i <= 100 — test expression

1++ — update expression

Different forms of the ‘for’ loop.

i. for (i= 0; i < 25 ; i++)
statement ; — single statement
ii. for (i = 0; i < 25 ; i++)
{ statement ;
statement; — compound statement
}
iii. for (i = 0 ; i < 25 ; i++)
or
for (1 = 0 ; 1 < 25 ; i++); — loop with no body.
iv. for (1 =0, 3 =0 ; 1 < 25 ; i++ , F++)
statement ; — Multiple initialization and
multiple updates separated
by comma
v. for (; 1 <25, 1 ++) — Initialization expression not used.

vi. for (; i < 25 ;) — Initialization and update
expression not used

vii. for (;;) — All three not used.
printf (“Forever \n");)

Examples:
i.

for(i=1,3=50;1<=20]|J>=10;i++ j--)
printf(“\n %d %d”i,73);

ii.

for (temp=0; temp<=50; temp=temp+5)
{
fahr = (9*temp) /5 + 32);
printf(*\n centigrade = %f Fahrenheit = %f”,temp, fahr);
}

iii.

/* Accepts values from user till 99 is entered */
int num = 0;
for (;num!=99;)
scanf (“%d”, &num) ;

Principles of Programming and Algorithm 5>»20 Control Structures

iv.
for (i = 0 ; ++i<10;)
printf (*%d \n”,1i)
Example
1. Calculation of factorial of a number, We know that n! = n x (n-1) x (n-2)x1.

Thus we have to repeatedly decrement n by 1 till 1 and multiply each value to
the previous product.

Note: we can also increment from 1 to n and perform multiplication.

Q /* Calculation of factorial */
#include<stdio.h>
main()
{ int num, product ;
printf (“Enter the number:”);
scanf (" %d4d”, &num) ;
for (product = 1 ; num >= 1 ; num--)
product = product * num;
printf(*\n the factorial is %d”,product);

Output

Enter the number : 5
The factorial is 120

Note: The for loop could also have been written as :
for (i= 1, product = 1;i < = num ; i++)
product = product *1i;
2. To calculate x where x is a float and y is an integer.

)

#include<stdio.h>
main()

{

/* Calculation of x¥ */

float x, power = 1, i ;
int y ;
printf (“*Enter the base and power :”)
scanf (“$f %d”,&x, &y):
for(i=1;i<=y;i++)
powexry *= x ;
printf(*\n %f raised to %d is %f”,x,y,power);

Principles of Programming and Algorithm 5 >»21 Control Structures

Output a
Enter the base and power : 2 3
2.000000 raised to 3 is 8.000000

Output b
Enter the base and power : 2.5 2
2.500000 raised to 2 is 6.250000
Nesting for statements

One for statement can be written within another for statement. This is called
nesting of for statements as illustrated below.

for(i=1;1i=25;1i++) i

{

for(j=1;3<=10;73++)
{ } Inner for loop Outer loop
}

Here, for every of i, the inner loop will be executed ten times.
Examples

1. We had earlier written a program to display a triangle of numbers using the
while loop. Another triangle is now illustrated using a for loop. The following
triangle is called the “Floyd's triangle".

1

23
456
78910

‘@ /* To draw a Floyds triangle using nested for loops */
#include<stdio.h>
main()
{
int n,line _number,number, count;
printf(* How many lines?”);
scanf (*$d”, &n) ;
number = 1;
for (line_number =1; line_number <=n , line_number++)
{

for (count =1;count<=line_number;count++)

Principles of Programming and Algorithm 5 »22 Control Structures

printf (“%d\t”, number++) ;

printf(“\n”);

}
Yoo

2. To display a rectangie of n rows and m columns filled with the character '*'.

* ok ok K * % X X
* K X K K X K X

* k k &k Kk & Xk Xk 4r0ws

*x Kk X *« x % ¥ ¥

-—

8 columns

[]
Q /* Display a rectangle of n rows and m columns */
#include<stdio.h>
main()
{ int n_rows, mcols 1i,73,;
printf (*Enter the number of rows:”);
scanf (*%d”, &nrows) ;
printf (*\n Enter the number of columns :7);
scanf (*%d”, &mcols) ;
for (i=1l;i<=nrows ;i++)
{ for (j =1;j<=mcols ; j++)
printf(»*~);
printf (“\n”); /* Go to the next line after each row */
}

3. To display multiplication tables 2 to 9 (n multiples each). The required display
is:
2x1=2 3x1=3.......... 9x1=9
2x2=4 3%x2=6.............. 9x2 =18

If the multiples do not fit on a single screen, display each screen after a pause.
{about 24 multiples will fit on a screen)

‘Q /* Multiplication Tables */
#include <stdio.h>
main()
{ int table_of , multiplier, n, , count = 1;
printf (*\n How many multiples ? : “);
scanf (*%4”, &n) ;
for (multiplier = 1,multiplier<=n; multiplier++,count++)
{

for (table_of= 2 ; table_of <= 9 ; table_of++)

Principles of Programming and Algorithm 5»23 Control Structures

printf(%2dx%2d=%3d\t”,table_of,multiplier, table of *
multiplier);

printf(*\n");

if (count %24==0) /* Screen full */

{ printf (* Press any key to continue...”);
getch (); clrscr();

This program, for each value of multiplier, table_of varies from 2 to 9 thereby
giving each row.

4. To display 'n' lines of the structure from the center of the first line on screen.

o

E A

o e I .
nlines

E

de N K ke K

‘Q /* Triangle using the * character */
#include<stdio.h>
main()
{
int spaces = 39, n, no_of_stars ,line_no, s:
printf (“Enter the number of lines: "):
scanf (*%d \n”,&n):

for (line_no = 1; line_no<=n;line_no++)
{
for (s=1;s<=spaces; s++)
printf (™ “); /* display spaces*/
for (no_of_stars = 1; no_of_stars<=line_no; no_of_stars++)

printf(“*");
printf (*\n");
spaces~--; /* reduce number of spaces by 1*/

}

LJ

[
Note: Instead of using a loop to display spaces, we can use a single printf
statement as :
printf(“%*S”, spaces, “ ");

Principles of Programming and Algorithm 5>»24 Control Structures

5.5] JUMP STATEMENTS

5.5.1 Break and continue

We have already seen the use of the break statement in the switch-case statement.
It also has one more use.

Sometimes, it is required to exit a loop as soon as a certain condition is met i.e to
force immediate termination of a loop bypassing the normal loop condition test.

When the break statement is encountered inside a loop,
terminated. Subsequent statements in the loop are skippe
resumes at the next statement following the loop.

Format
break;

Example:The following program checks whether a number is prime or not. To check
a prime number, we successively divide it by 2 to number ~1. If it is divisible the

number is not prime. Thus, as soon as we get a 0 remainder, we have to break out of
the loop.

the loop is immediately
d and program control

#include<stdioc.h>

main()

{ int number, i ,prime = 1;
printf (“enter the number: ") ;
scanf (“%d”, &number) ;
for(i=2;1i <number; i++)

{
if (number %i == 0)
{ prime = 0;
break; } o}
if (prime==0)
printf (*\n The number is not prime”) ;
else

printf(*\n The number is prime”) ;

}

Note: If there are nested loops, the break statement will cause exit only from the
innermost loop.
Example
count =1;
for (i=1;i<=5;,i++)
{ for (j=1;3<=5;j++)
{

printf (“Enter a number:”) ;
scanf (*%d”, &n) ;

if (n<0)
break;
}
count++;

o AR A s bt

Principles of Programming and Algorithm 5»25 Control Structures

Here, if the user enters a negative number, the block statement will take control to
the statement count++, in the outer loop.

Continae statement

The continue statement is somewhat similar to the break statement except that it

does not cause the loop to terminate. It bypasses the remaining statements and it
forces the next iteration of the loop to take place as usual.
Format:
continue;
Example:
do
{ printf(“Enter a number :7):
scanf (“%d”,&n) ;
if (n<0)
continue;
sum = sum + n;
} while (n! = 999);

This code accepts integers and calculates the sum of only positive numbers. The
loop terminates after the user enters 999.

In the case of for loop, first the increment part of the loop is performed, next the
condition is tested and finally the loop continues.

while (condition)
{
continue;
break;
}
>
Examples
1.
int 1=5; °
while (1)
{ i--
if{(i == 3)
break;
printf (*%d”,1);
}

o/p 4

Principles of Programming and Algorithm 5>»26 Control Structures

2
int i=5,
while (1)
{ i--
if(i== 3)
continue;

printf(*%d”,1i);
3

o/p 4210

5.5.2 goto and labels

The goto statement is an unconditional jump statement. The goto statement
(although not used frequently) is used to alter the normal sequence of program
execution by unconditionally transferring control to some other part of the program.
Format

goto label;
The statement where control has to be transferred is identified by the label.
e Alabelis a valid C identifier.
e Alabel is followed by a colon.

e The label can be attached to any statement in the same function as the goto.
¢ The label does not have to be declared like other identifiers.

Example

X=1;
loop:
X++;
1£(X<100)
goto loop;

One good use for the goto statement is to come out of several layers vy zesting.
Example

for (...)
{ for (...)
{ while (...)
{ ...
if (error)
goto out;

}

out:

Note: Control cannot be transferred from outside to within a loop using the goto
statement.

o~

Principles of Programming and Algorithm 5 »27 Control Structures

5.5.3 Using exit() function

The exit () function causes immediate termination of the entire program.

The exit { } function is called with an argument 0 to indicate that termination is
normal. Other arguments are used to indicate some sort of error.

A common use of exit () occurs when some mandatory condition for program
execution is not satisfied. Invalid password entered, absence of color graphics card
for running computer games, negative or invalid input entered, etc.

Example:
main{)
{

int code;

printf (“Enter the security code:”);

scanf (*%d”, &code} ;

if (tvalid(code))

exit(0);

In this example, a user-defined function valid (code) accepts the code and
validates it. If invalid, it returns 0 and 1 if valid. If the code is not valid, the program
execution is terminated.

Another use could be in the switch case statement as shown to stop program
execution if user enters 4.
do
{ ¢ch = getchar();

switch (ch)

{ case ‘1’ : add_record();
break;
case ‘2’ : delete_record();
break;
case '3’ : view_records{);
break;
case ‘4’ : exit(0)

}
} while (ch!='4");

Principles of Programming and Algorithm 5 »28 Control Structures

SOLVED PROGRAMS

1. To count the number of words, lines and sentences in the text.

We will define a flag called status, this flag will contain 0 if we are OUT of a
word and it will contain 1 if we are within a word.

‘L;—‘ /* Counts number of words, lines and sentences in the text */
#include<stdio.h>
#define "IN 1
#define OUT 0

main()

{
int wordcount = 0, linecount = 0, sentcount = 0, status = OUT;

char ch;
printf(*\n Enter the text - ctrl z to terminate \n”);
while ((ch=getchar()) != EOF)

{
switch (ch)
{
case ',’ : case ‘;’' : case ‘' '
if (status == IN)
{ wordcount++;
status = QUT;}

break;
case ‘\n’ : line count++;
if (status == IN)
{ wordcount++;
status = OUT;
}
break;
case ‘.’ : sentcount++;
if (status == IN)

{ wordcount++;
status = OUT;
}
break;
default : status = IN;
} /* end of switch */
} /* end of while */
if (status == IN)
wordcount ++;
printf(*\n Number of lines = %d”,++linecount);
printf(*\n Number of sentences = %d”, sentcount):
printf (*\n Number of words = %d”, wordcount):
* 3 *
} /* end of main */

Principles of Programming and Algorithm 5 >»29 Control Structures

2. To display the first 'n’ prime numbers.
L)
== /* First n prime numbers, use of nested loops */

#include<stdio.h>

#define PRIME 1

#tdefine NOTPRIME C

main()

{ int n, divisor, flag = PRIME, number, count =1;
printf(“\n How many prime numbers ? : *);
scanf (“&d”, &n) ;

printf("\n The first %d prime numbers are : \n”);
printf (“2\t”);
number = 3;

while (count<=n)
{ /* check if number is prime */
for (divisor =2; divisor<=n-1;divisor++)

{ 1f (n% divisor == 0)
{ flag = NOTPRIME;
break; } }

if (flag == PRIME) /* if number is prime */

{ count ++ ; printf(“%d \t”, number) };
flag = PRIME; /* reset flag */
number++; /* check if next number is prime */
} /* end of while */
}/* end of main */

Output
How many prime numbers? : 5
The first 5 prime numbers are : 2 3 5 7 11

cise

A. Predict the output of the following.

i.

main()
{ int x = 1;
switch (x)
{ case 0 :x= 1;
case 1 :x= 3;
case 2 :x+= 4;
case 3 :Xx = 2;
default:x+= 2;
}

printf (“*%d” x);
}

Principles of Programming and Algorithm 5 >»30 Control Structures

ii.

main()

{ int x=5,y=50,z=(x+y)*10;
while (x<=5)

X=y/X;

}

How many times will the loop execute?

iii.

int 1 = 4;

switch (1)

{ default : printf (“A");
case 1 : printf(“B”);
case 4 : printf(“C”);

}

iv.

int i=5;

while (1)

{ i--;
1f (1==3)

continue;

printf(“\n Hello”):

}

V.

int 1=3;

while (i)

{ 1=100;
printf (*%d..”,1i);
i--;

}

vi.

main ()

{ int 1,3,k;
for (j=1;j<=4;j++)

1f(j*4==12)
goto there;
else

printf (“*here\n”);
for (i=1,1<=5 i++)
{ k = ixi;
there : printf (“there\n”);

Principles of Programming and Algorithm 5>»3 Control Structures

vii.

main ()

{

int ¢=97;
switch{c) ;
{ case *a’':

if (c>3)

case ‘b’:
c=10;
printf(*%d”,c);

B. Programming exercises

1. Write a program to display all Armstrong numbers below 1000.
(An Armstrong is a number whose sum of cubes of digits is the number itself.
eg. 153 =1"+5%+39

2. Display all perfect numbers below 500.
(A perfect number is a number, such that the sum of its factors is equal to the
numberitself. 6 =1+ 2 + 3)

3. Display the first ‘n' terms of the Fibonacci series. (each term = sum of previous
two terms). »

4. Accept an integer and display its prime factors.

5 Find the sum of first 'n’ terms of the following series
i. 14+3+5+....
ii. X+ x>+ x>+
- 1 2 3
T N A Wik Rt
_ x x
o X-57 + 37

6. Accept two integers a and b and display a*b , a/b and a%b without using *, /
and % operators.

7. Calculate the GCD and LCM of two integers.

8 Accept characters from the keyboard till the user enters EQF. Count the
number of uppercase, lowercase alphabets and vowels in the text.

9. Write a C program to read lines of text and count the number of characters,
words and lines in the text.

10. Write a C program to read an integer, reverse it and display both.

11. Write a program to display digits of an integer separated by tabs
Example: 1009 -1 0 0 9

2000 -2 0 0 O
12. Accept data from the keykoard and check if it is valid or invalid.
13. Accept lines of text from the user and find the length of the longest line.

Principles of Programming and Algorithm 5>»32 Control Structures

C. Review Questions

1. What are the different forms of the if statement?

2. Explain the switch-case statement with examples.
3. Differentiate between if-else and switch-case.

4. Explain else-if ladder with an example.

5. Explain the syntax of a while loop.

6. How does a do-while loop differ from a while loop?
7. Explain different ways to terminate loop execution.
8. Explain the for loop with examples.

9. Distinguish between break and continue.

10. Write a note on goto and labels.

11. Illustrate the use of the break statement in the switch —case statement.
12. Discuss the working of if-else and switch statement.

—

INTRODUCTION TO
PROBLEM SOLVING

6.1] INTRODUCTION

Problem solving is a part of thinking. It is a part of a larger problem process that
includes problem finding and problem shaping. George Polya outlined the essence of

problem solving:
1. Understand the problem (communication and analysis)
2 Plan a solution (modelling and design)
3. Carry out the plan (code generation)
4 Examine the result for accuracy(testing and quality assurance)
For certain problem the task of defining the problems are much more time

consuming and costly than the task of programming them. The modularity on most of
the problems can be represented by a hierarchical structure.

Main
module Level 1

Level 2

Level 3

Level 4

6 >1

Principles of Programming and Algorithm 6>»2 Introduction to Problem Solving

The structure has a single main module, with which we associate a level number
of 1, which gives the brief general description of the system. The main module refers
to a number of subordinate modules which have been numbered as level 2, 3, 4
respectively.

Level 2 gives more detail description of the system, than the main module and so
on.

It is possible that modules at upper level refer to the lower one. The concept of
hierarchically structuring a problem in this fashion is a fundamental one in the
problem solving. It is this form of the organization or structuring which permits us to
understand a system at different levels and allow us to make changes at one level.
Without having to completely understand more detailed descriptions at higher levels.
The important thing that can be done with this is desirability of being able to
understand a module at a certain level independently and all remaining modules at
that same level.

The task of writing a computer program is made simpler if the problem can be
analyzed in terms of sub-problems. In organizing a solution to a problem which is to

be solved with the aid of computer, we are confronted with at least four interrelated
sub-problems.

The sub-problems are:

1. To understand throughly the relationships between the data elements that are
relevant to the solution of the problem.

2. To decide on the operations that must be performed on the logically related
data elements.

3. To divide the methods of representing the data elements in the memory of the
computer such that a) the logical relationships that do exist between data items
can best be retained and/or b) the operations on the data elements can be
accomplished easily and efficiently.

4. To decide on what problem solving language can best aid in the solution of the
problem by allowing the user to express in a natural manner the operations he
or she wishes to perform on the data.

6.2 PROBLEM SOLVING TECHNIQUES

There are many approaches to problem solving, depending on the nature of the
problem and the people involved in the problem. The more traditional, relational
approach is typically used and involves example, clarifying the description of the
problem, analyzing causes, identifying alternatives ,accessing each alternative,
choosing one, implementing it, and evaluating whether the problem was solved or
not.

Another approach is appreciative inquiry. That approach asserts that "problems”
are often the result of our own perspectives on a phenomena, example if we look at it

Principles of Programming and Algorithm 6>»3 Introduction to Problem Solving

as a "problem,” then it will become one and we'll probably get very stuck on the
"problem." Appreciative inquiry includes identification of our best times about the
situation in the past, wishing and thinking about what worked best then, visioning

what we want in the future, and building from our strengths to work toward our
vision.

Following are some of the problem solving techniques

A. Trial And Error

In trial and error, one selects a possible answer, applies it to the problem and, if it

is not successful, selects (or generates) another possibility that is subsequently tried.
The process ends when a possibility yields a solution.

This approach is more successful with simple problems and in games, and 1s often
resorted to when no apparent rule applies. This does not mean that the approach
need be careless, for an individual can be methodical in manipulating the variables in
an attempt to sort through possibilities that may result in success. Nevertheless, this
method is often used by people who have little knowledge in the problem area.

fidvantages

1. Solution-oriented: Trial and error makes no attempt to discover why a solution
works, merely that it is a solution.

2. Problem-specific: Trial and error makes no attempt to generalise a solution to
other problems.

3. Non-optimal: Trial and error is an attempt to find a solution, not all solutions,
and not the best solution.

4. Needs little knowledge: Trials and error can proceed where there is little or no
knowledge of the subject.

@pplications

1. Biological evolution is also a form of trial and error. Random mutations and
sexual genetic variations can be viewed as trials and poor reproductive fitness
as the error. Thus after a long time 'knowledge' of well-adapted genomes
accumulates simply by virtue of them being able to reproduce.

2. Bogosort can be viewed as a trial and errer approach to sorting a list.

3. In mathematics, the method of trial and error can be used to solve formulae -it
is a slower, less precise method than algebra, but is easier to understand.

Principles of Programming and Algorithm 6>4 Introduction to Problem Solving

B. Brain storming

Brainstorming is a group creativity technique designed to generate a large ideas
for the solution to a problem. The method was first popularized in the late 1930s by
Alex Faickney Osborn. Osborn proposed that groups could double their creative
output by using the method of brainstorming.

Although brainstorming has become a popular group technique, researchers have
generally failed to find evidence of its effectiveness for enhancing either quantity or
quality of ideas generated. Because of such problems as distraction, social loafing,
evaluation apprehension, and production blocking, brainstorming groups are httle
more effective than other types of groups, and they are actually less effective than
individuals working independently. For this reason, there have been numerous
attempts to improve brainstorming or replace it with more effective variations of the
basic technique. Although traditional brainstorming may not increase the productivity
of groups, it may still provide benefits, such as enhancing the enjoyment of group
work and improving morale. It may also serve as a useful exercise for team building.

There are four basic rules in brainstorming. These are intended to reduce the
social inhibitions that occur in groups and therefore stimulate the generation of new

ideas. The expected result is a dynamic synergy that will dramatically increase the
creativity of the group.

1. Focus on quantity

This rule is a means of enhancing divergent production, aiming to facilitate
problem solving through the maxim, quantity breeds quality. The assumption is
that the greater the number of ideas generated, the greater the chance of
producing a radical and effective solution.

2. No criticism

It is often emphasized that in group brainstorming, criticism should be put ‘on
hold'. Instead of immediately stating what might be wrong with an 1dea, the
participants focus on extending or adding to it, reserving criticism for a later
‘critical stage' of the process. By suspending judgment, one creates a supportive
atmosphere where participants feel free to generate unusual ideas.

3. Unusual ideas are welcome

To get a good and long list of ideas, unusual ideas are welcomed. They may
open new ways of thinking and provide better solutions than regular ideas.
They can be generated by looking from another perspective or setting aside
assumptions.

4. Combine and improve ideas

Good ideas can be combined to form a single very good idea, as suggested by
the slogan "1+1=3" This approach is assumed to lead to better and more
complete ideas than merely generating new ideas alone. It is believed to
stimulate the building of ideas by a process of association.

Principles of Programming and Algorithm 6»5 Introduction to Problem Solving

- C. Divide And Conquer

Divide and Conquer (D&C) is an important technique in problem solving. It

recurswvely breaks down a problem into two or more sub-problems of the same
(or related) type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the original
problem.

Advantages

1

Solving difficult problems

Divide and conquer is a powerful tool for solving conceptually difficult
problems, such as the classic Tower of Hanoi puzzle. Indeed, for many such
problems the paradigm offers the only simple solution.

Dividing the problem into sub-problems so that the sub-problems can be
combined again is often the major difficulty in designing a new aigorithm.

Parallelism

Divide and conquer technique is naturally adapted for execution in multi-
processor machines, especially shared-memory systems where the
communication of data between processors does not need to be planned in

advance, because distinct sub-problems can be executed on different
PIroOCessors.

Memory access: Divide-and-conquer technique naturally tend to make
efficient use of memory caches. The reason is that once a sub-problem is small
enough, it and all its sub-problems can, in principle, be solved within the
cache, without accessing the slower main memory. An algorithm designed to
exploit the cache in this way is called cache oblivious, because it does not
contain the cache size(s) as an explicit parameter.

STEPS IN PROBLEM SOLVING

Problem Solving includes three major activities:

- N

Define a problem

Analyze problem

Explore solution

Define a problem

Before beginning work on a house, a builder reviews the blueprints, checks that
all permits have been obtained. And surveys the houses foundation. A builder
prepares differently for building a skyscraper. Or building a dog house. No

matter what the project, the preparation tailored to its needs and done
consciously before construction begins.

The first prerequisite you need to fulfill before designing the program model is
a clear statement of the problem that the program is suppose to solve. A
problem definition defines what the problem is without any reference to the

Principles of Programming and Algorithm 6>6 Introduction to Problem Solving

possible solutions. Its simple statement may be one to two pages, and it should
sound like a problem. For example the statement “We can't keep up with orders
Gigatron", sounds like a problem and is a good problem definition. Whereas
the statement, "we need to optimize our automated data-entry system to keep
up with orders for the Gigatron"” is a poor problem definition because the term
“We need to ..." itself is , in a way explaining what needs to be done. It doesn't
sound like a problem; it sounds like a solution. Problem definition comes before
requirement analysis, which is more detailed analysis of the problem.

The problem definition should be in user language, and the problem should be
described from the user's point of view. It usually should not be stated in
technical computer terms.

The penalty for failing to define the problem is that you can waste a lot of time
solving the long problem is a double — barreled penalty because you also don't
solve the right problem.

Solving a problem without a clear understanding of its components may turn
out to be a futile exercise as the solution may not meet the requirement of the
user. So a problem statement has to be prepared which explains every minute
detail of the problem beyond doubt. This can be best achieved by writing down
the problem in clear statements. Better problem definition results in faster,
easier and accurate solutions.

Analyze Problem

It describe in detail what a problem is supposed to do, and they are the first
step toward a solution. The requirements activity is also known as “functional
specification”. And explicit set of requirements, is important for several
reasons. Explicit requirements help to insure that the user rather than the
programmer drives the programs functionality. If the requirements are explicit,
the user can review them and agree to them. Explicit requirements keep you
from guessing what the user wants. Specifing requirements adequately is a key
to the programs success.

Essentially, we must look for three main components which are

1. What is given as input

il What is expected as output, and

11i. How to arrive at the solution

You are already familiar with the above three items i.e. input (data) , process,
and output (information) . Hence while determining program requirements we
have discern from the problem statement what exactly constitutes input, what is
expected as output and how to processing is to be done. It will not be out of
place to mention here that, a given problem or business solution may be solved

in a particular way manually , and we may or may not choose to adopt the same
processing logic while developing a solution to be computerized.

Lets take an example and understand the above concept of input, process and
output.

Principles of Programming and Algorithm 6>»7 Introduction to Problem Solving

A Program is required lo retrive motor vehicles registration record from a file
upon receipt of request from an operator at a terminal. The operator will supply
a vehicle registration number and the program will display the details of its
vehicle and its owner. An error message will be displayed if the program is
unable to locate the vehicle's record.

Input: Vehicle registration number

Process: Using the registration number search for it, and it found, retrive the
details of the vehicle and its owner's name from the disk.

Output: If retrival was successful, then allow the details of the vehicle to the
display on the screen but if unsuccessful, indicate the absence of the vehicle
registration on the disk and display a suitable error message.

3. Explore solution

Once the problem is clearly defined an algorithm (another term for processing
logic or model) can be developed. This is the most creative part of
programming. At this stage, the algorithm may be constructed in the broad
terms to help problem. To be useful as a basis for writing a program, the
algorithm must:

e Arrive at a correct solution within a finite time.
e Be clear, precise and unambiguous.

e Be in a format which lends itself to an elegant implementation in a
programming language.

The important tools in developing solution and in the preparation of a algorithm
are flowcharts and pseusocodes among others. Flowcharts provide a visual and
graphical representation of the solution while pseduocodes mean writing the program
logic in a simple English - like language. Logic deiced using these tools can be
written using an programming language. In other words these are the generic tools.

6.4 ALGORITHMS AND FLOWCHARTS

A computer is a machine that manipulates data by using a finite number of
unambiguous instructions obediently, uncritically, and without showing any
emotions. Take an instance of major who went to a Post Office with the order " Buy
five 50 paise stamps”. The servant went with the money to the Post Office and did not
turn up for a long time.

The major got worried and went in search of him to the Post Olffice and found him
standing there with the stamps in his hands. When major angrily asked him that what
made him standing there, he replied that he was ordered to buy five 50 paise stamps
but not ordered to return with them. Computer solving is an intricate process running
much thought, careful planning, logical precision, persistance and attention.

Principles of Programming and Algorithm 6>8 Introduction to Problem Solving

Definition
Algorithm

In order to carry out a task using computer, a sequence of explicit and
unambiguous instructions is known as an algorithm.

An algorithm consist of a set of explicit and unambiguous finite basic steps, when
followed for a given set of initial conditions may produce the corresponding output
and terminates in a finite time. An algorithm expressed in a programming language
is called a program.

Flowchart

A flowchart is a pictorial representation of a program. A flowchart is designed to
visually represent the flow of execution through a program.

A flowchart caplures sequence, selection, and iteration, all the three basic
constructs of the program. Flow charts are made up of boxes, each with their own
function. The shape of box shows what it is doing.

Arrows between these boxes shows the program flow.
A typical flowchart may have the following kinds of symbols:

1. Start and end symbols, represented as lozenges, ovals or rounded rectangles,
usually containing the word "Start" or "End", or another phrase signaling the

start or end of a flowchart.

2. Arrows, showing what's called "flow of control". An arrow coming from one

symbol and ending at another symbol represents that control passes to the
symbol the arrow points to.

3. Processing steps, represented as rectangles. Examples: "Add 1 to X"; "replace
identified part”; "save changes” or similar.

4. Input/Output, represented as a parallelogram.

v

5. Conditional (or decision), represented as a diamond (rhombus).

Principles of Programming and Algorithm 6>»9 Introduction to Problem Solving

These typically contain a Yes/No question or True/False test. This symbol is
unique in that it has two arrows coming out of it, usually from the bottom point

and right point, one corresponding to Yes or True, and one corresponding to No
or False.

The arrows should always be labeled. More than two arrows can be used, but
this is normally a clear indicator that a complex decision is being taken, in
which case it may need to be broken-down further, or replaced with the "pre-
defined process" symbol.

6.5 CHARACTERISTICS OF AN ALGORITHM

Following are the basic characteristics of an algorithm:

1. INPUT: There are no restrictions over the input requirements of the algorithm.
Number of inputs of an algorithm may be zero or more than zero.

2. OUTPUT: There must be at least one output produced by the algorithm as it
accomplishes the given task.

3. EFFECTIVENESS: Every instruction used in algorithm should be basic enough
or it can be broken into basic instructions so that these instructions can be
carried out manually using pen and paper.

4. DEFINITENESS: Every instruction of the algorithim should be unambiguous.

5. FINITENESS: The algorithm should get terminated in a finite amount of time.

Qualities of a good algorithm
1. They are simple but powerful and general solutions.

2. They can be easily understood by others.

3. They can be easily, modified, if necessary.

4, They are correct for clearly defined solutions.

5. They are economical in the use of computer time, storage, and peripherals.
6. They are well documented.

7. They are maching independent.

8. They are able to be used as a subprogram for other problems.

Principles of Programming and Algorithm 6 >» 10 /nrrodubtion to Problem Solving

CONDITIONALS IN PSEUDOCODE

Pseudocode (derived from pseudo and code} is a compact and intormal high-ievel
description of a computer programming algorithm that wuses the structural
conventions of some programming language, but typically omits details that are not
essential for the understanding of the algorithm, such as subroutines, variable
declarations and system-specific code. The purpose of using pseudocode is that it
may be easier for humans to read than conventional programming languages, and
that it may be a compact and environment-independent description of the key
principles of an algorithm.

Flowcharts can be thouqht of as a graphical alternative to pseudocode.
Pseudocode resembles, but should not be confused with, skeleton programs including
dummy code, which can be compiled without crrors.

As the name suggests, pseudocode generally does not actually obey the syntax
rules of any particular language; there is no systematic standard form, although any
particular writer will generally borrow the appearance of a particular language.
Popular sources include Pascal, BASIC, C, Java, Lisp, and ALGOL. Delails not
relevant to the algorithm (such as memory management code) are usually omitted.
Blocks of code, for example code contained within a loop, may be described in a one- |
line natural language sentence.

Just like structured programs pseudocode is built on three basic constructs:
sequence, selection and looping. And just like Visual Basic program, a program
written in pseudocode is divided into functions or procedures. Each function has

signature (name, return type and arguments) and a body {a sequence of pseudocode
stalements).

An alternative method of representing program logic is pseudocode. Instead of
using symbols to represent the program logic steps, a pseudocode uses statements
which are a bridge between actual programming and ordinary English. In a
pseudocode each step is written using a simple English phrase which is also called a
construct.

LOOPS IN PSEUDOCODE

Some of the conventions which are to be used while writing pseudocodes are as
follows :

1. All statements in a loop should be intended.
2. All alphanumeric values should be enclosed in a single or double quotes.
3. The beginning and end of the pseudocode is marked with keywords like ‘start’

and ‘end’ respectively.

4. All statements must include certain key words which denote an operation.

Principles of Programming and Algorithm 6 » 11 Introduction to Problem Solving

The Input Statement

The following verbs can be used to accept or input data from the keyboard or from
an exciting from like a file.

Accept or Read

For Example

Accept Name
Read Name

The Output Statement

The following verbs can be used to output data

Write or Display

For Example

Write Name
Display Name

For Example. A function to return absolute value of an integer might look like this:
Absolute_Value(x : Integer) -> Integer
Begin
If (x<0)
Return (-x)
Else
Return (x)
End -If
End

The function name is Absolute Value, it receives and integer value(x) an returns
an integer value as its result. The function body starts with the word Begin and ends
with the End word. Within a body we have a sequence of statements. Each statement

within the sequence maybe either a simple statement, a selection statement, or a
iteration statement.

Simple statements
A simple statement is one of the following:

e Variable : Type(declare a new variable of a given type)

e Variable := Expression(Assign the value of an expression to a variable)
e Function(Arguments) (Call function, passing in arguments)

o Return(Expression) (return expression as the value of this function)

e Break (break out of the current loop or switch statement)

e These are not only the possibilities for simple statements, but they are the most
common.

Principles of Programming and Algorithm 6> 12 Introduction to Problem Solving

Selection statements

A selection statement is either an if statement or a case statement

If conditionl Then
Statementl Body 1
Elseif condition2 Then
Statement Body 2

... {You can have many else if clause)
Else

Statement Body N
Endif

As shown an if statement tests a condition, or boolean expression(i.e. an
expression that evaluates to either True or False) If the condition is true, then the
corresponding statement body is executed. But if the condition is false, then the next
expression is checked similarly.

This continues in sequence until an expression is found to be true. If all the
expressions evaluate to false, then the statement body associated with the else clause
is executed. You can have as many elseif clauses as you had like (including none).

The else clause is also optional.

Select Case expression

Case valuel:
Statement Body 1
Case Value?2
Statement Body 2

Default:
Statement Body N
Endselect

A select case statement (also called a case statement or sometimes a switch
statement) evaluates an expression and compares it against several values. If the
result of the expression is equal to one of the values in the case clauses, then the
corresponding statement body is executed.

If the result of the expression does not match any case clause, then the default
statement body 1s executed. After a statement body is executed, the computer
executes the next instruction immediately following the Endselect .

Iteration Statements Or Loops

A repetition statement (also called an iteration statement or a loop) is very useful.
It causes a block.of code to be executed repeatedly. There can be many kinds of
loops.

While Do loop

While condition do
Statement /body
Endwhile

Principles of Programming and Algorithm 6>» 13 Introduction to Problem Solving

As long as the condition is true, the statement body is executed. Thus, something
in the statement body should modify one of the variables in the condition expression,
or else you will be stuck in an infinite loop.

Do Until loop

Do
Statement Body
Until condition

A do until loop is very similar to the while loop. The main difference is that the
while loop tests the condition before executing the statement body, but the do while
loop tests the condition after executing the statement body. Thus, the body of a do

until loop will always be executed at least once. For instance, suppose the condition
is false.

For a while statement, since we test before, we discover that the expression is false
and do not execute the body. However, for a do until loop we have already executed
the body before we test the condition expression for the first time.

The other difference is that a while loop repeats as long as a condition is true, but
a do until loop repeats as long as a condition is false.

6.8| TIME COMPLEXITY

An algorithm is said to be correct if, for every input instance, it halts with the
correct output. We say that a correct algorithm solves the given computational
problem. An incorrect algorithm might not halt at all some wuput instance or it might
not halt at all on some input instances.

Analyzing an algorithm has come to mean predicting resources that the algorithm
requires. Occasionally, resources such as memory, communication bandwidth, or

logic gates are of primary concern, but most often it in computational time that we
want to measure.

The performance analysis and measurement of an algorithm is based on two
criteria:

® Space Cowmnplexity: It is the amount of memory is needed to run to completion.
¢ Time Complexity: It is the amount of time needed to run to completion.
Time Complexity

The time T(p} taken by a p~~gram p is the sum of the compile time and run time.
The compile time does not depend on the instance characteristics so we shall concern
oursrl.zs with fusi the time of a program which is denoted by tp.

Tp(n} = CaADD(n) + CsSUB(n) + CmMUL(n) + CADIV(n) + ...

In computational complexity theory, big O notation is often used to describe how
the size of the input data affects an algorithm's usage of computational resources

Principles of Programming and Algorithm 6> 14 Introduction to Problem Solving

(usually running time or memory). It is also called Big Oh notation, Landau notation,
Bachmann-Landau notation, and asymptotic notation

F(n) = O(g(n)) if there exists positive constants ¢ and no such f(n) < cg(n)
For all n; where f and g are non negative functions.
We write O(1) to mean a computing time that is a constant

e O(n) is called linear

e O(n2) is called qudratic

¢ Of(nn) is exponential

Big OH notation

Big OH notation is the characterization scheme that allows to measure properties
of an algorithm complexity performance and/or memory requirements in a general
fashion. The algorithm complexity can be determined ignoring the implementation

dependent factors. This is done by eliminating constant factors in the analysis of the
algorithm.

Basically, these are the constant factors that differ from computer to computer.
Clearly, the complexity function f(n} of an algorithm increases as n increases. It is the
rate of increase of f(n) that we want to examine.

Suppose f(n) and g(n) are functions defined on positive integer numbers n, then
function f(n) = O(g(n)) , read as "f of n is big Oh of g of n" or as "f(n) is of the order of
g(n)", if there exist positive constants ¢ and n0, such that f(n) = ¢ * g(n) for all values
of n = no.

That is, for all sufficiently large g(n). Thus g is upper bound, except for a constant
factor ¢ on the value of f for sufficiently large g(n). Thus g is an upper bound, except
for a constant factor ¢ on the value of f for all suitably large n i.e., n>=no. While
providing an upperbound function g for f , we will use only simple functional forms.
These typically contains a simple term in n with a multiplicative constant of one.

Cutegories’of @lgorithms
Based on Big Oh notation , the algorithms can be categorized as follows :
» Constant time (O(1)) algorithms
e Logarithmic time (O(log n)) algorithms
e Linear time (O(n)) algorithms
¢ Polynomial time (O(nk), for k>1) algorithms
e Exponential time (O(kn), for k>1) algorithms

Many algorithms are O(n log n).

Principles of Programming and Algorithm 6> 15 Introduction to Problem Solving

Limitations of Big Oh notation

Big Oh has two basic limitations :
¢ It contains no consideration of programming effort
» It masks potentially important constants

- As an example of later limitation, imagine two algorithms, one using 500000n2
time, and the other n3 time. The first algorithm is O(n2), which implies that it will
take less than the other which is O(n3). However the second algorithm will be faster
for n<500000, and this would be faster for many applications.

Basic time analysis of an algorithm

Lets take an example of analysis of time required for the execution of an algorithm

Consider the following algorithm to sum the values in vector V that contains N
values:

Algorithm SUM_VALUES

Given a vector V containing N elements, this algorithm computes the arithmatic
sum (SUM) of these elements. 1 is a integer variable.

1. [Sum the values in Vector V]
SUM <- 0
Repeat for I =1,2,.N
SUM <- SUM +V[I]

2. [Finished]
Exit

Rather than calculating the exact time, we want an estimate of it. Usually this is
most easily done by isolating a particular operation, sometimes called an active
operation, that is central to the algorithm and that is executed essentially as often as
any other. In the above example, a good operation to isolate is the addition that
occurs when another vector value is added to the partial some. The other operations
in the algorithm, the assignments, the manuluation of the index I, and the accessing
of a value in the vector, occur no more often then the addition of vector values. These

other operatinns we collectively called book keeping operations and are not generally
counted.

It is very important that none of the bookkeeping operations are executed
significantly more often than the active operations. After the active operations are
isolated , the no of times inat it is executed is counted.

The number of additions of values in the above example is N. As long as the active
opeiatinn occurs at as often as others , then the execution time will increase in
progortion to the number of times the active operation is executed. The above
algorithm has execution time proportional to N . or expressed another the time
required is linearly proportional to the size of the input.

Principles of Programming and Algorithm 6> 16 Introduction to Problem Solving

Example : Matrix multiplication of two N * N matrices A and B to form N * N mairix
C.

Algorithm MATRIX_MULTIPLICATION

Given two dimensional square matrices A and B, each containing N rows and
columns, this algorithm computes the matrix product and places the result in matrix
C.1,J, K are integer variables.

1. [Multiply matrices A and B and store the result in matrix C]
Repeat for I = 1,2,.N
Repeat for J =1,2,.N
SUM<- 0
Repeat for K = 1,2,.N
SUM <- SUM + A[I, K] * B{K,J]
clI1I,J] <- SUM

2. [Finished]
Exit

The actual size of the input for this algorithm is 2N2, but it is convinient to use N
as our measure of the size of the input in order to simplify the calculations. For the
active operations, we can select either the multiplication of A[I, K] AND B[K, J], or
the addition of above product to sum. This follows since both are central operations
and essentially occurs as any other. It is to see that either of these operations is
executed N3 times, so that the time for the algorithm is proportional to N3.

Note that there are actually more assignments than multiplications or additions.
There are n assignments to I, N2 assignments to J and C, N3 assignments to K, and
N2+ N3 to SUM. This vields a total of N + 3N2 + 2N3 assignments. Certainly
assignments could have been selected as our active operation although it is

questionable whether it is as central to the problem as either multiplication or
addition.

If it were used as a active operation , we would conclude that the time was
proportional to N + 3N2 +2N3. Fortunately, we are normally only interested in the
order of magnitude of the time required. The order only considers he term that grows
fastest,. 2N3, ignore the constant 2, associated with it. Thus we obtain the order of
magnitude for the time required is N3, independent of which operation is chosen as
active, but that just happens in the problem. In other cases, may be assignments
would have to be active.

Thus it is easy to verify the following:

e 100n3is O(n3)

e 6n2 + 2n + 4is O(n2)

e 1+2+3+..+n=n"*(n+1)/2 =n2 + O(n) = O(n2)
e 1024 is O(1)

Principles of Programming and Algorithm 6 > 17 Introduction to Problem Solving

* n+lognisO(n)
¢ 3nis O(n2) and also O(n)

6.9 SIMPLE EXAMPLES: ALGORITHMS AND
FLOWCHARTS (REAL LIFE EXAMPLES)

Example
Accept two numbers, add them and display the result.

The steps for the above problem statement are
START
ACCEPT N,
ACCEPT N.
SUM = N, + N,
DISPLAY SUM
END

The above is the pseudocode for our problem. It may be noted here that whether
we input N, first or N, first is immaterial here.

However the statement SUM = N, + N, cannot come before the two numbers
have been input.

Flowchart

ACCEPT N,, N, denotes that two numbers are accepted from the user and stored
in variable N, and N,. SUM = N,+N, denotes that a process is taking place, which is
adding the numbers N; and N, and the resultant output is stored in the variable
SUM. DISPLAY SUM denotes that the resultant SUM is displayed on the screen.

" Principles of Programming and Algorithm 6> 18 Introduction to Problem Solving

Example: Mohan's monthly salary consists of basic salary, traveling allowances
and 15% commission on sales made. At the end of the month we need to calculate his
salary which is done in the following pseudocode.

START
ACCEPT BAS_SAL, TVL_ALL, SALE_AMT
COMM = SALE_AMT *0.15
NET SAL = BAS_SAL + TVL_ALL + COMM
DISPLAY NET_SAL
END
It may be noted here that we are accepting 3 variables. BAS_SAL, TVL ALL,
SALE_AMT with one accept statement. This is valid. Alternatively, three ACCEPT
statements could have been written one for each of the three variables. Here

BAS SAL, TVL ALL, NET_SAL are variables which hold the value for basic salary,
travelling allowance, sales amount and net salary, respectively.

Accept Bas_Sal,
Tvi_All, Sale_ Amt

N

I Comm =0.15 * Sale_ Amt I

3
[Net_Sal = Bas_Sal + Tvl_All + Comm |

z

{ Display num ;
\

(Stop)

Example. Maximun of three numbers :

START
ACCEPT NUM1, NUM2, NUM3
IF NUM1 IS > NUM2 THEN
IF NUM1 IS > NUM3 THEN
DISPLAY “NUM1 IS MAXIMUM”
- ELSE

Principles of Programming and Algorithm 6> 19 Introduction to Problem Solving

DISPLAY “NUM3 IS MAXIMUM”
ELSEIF NUM2 IS > NUM3

DISPLAY “NUMZ IS MAXIMUM”
ELSE

DISPLAY “NUM3 IS MAXIMUM”
ENDIF
END

We are accepting three variables here NUM1,NUM?2, NUM3. And the algorithm
is working to find out the maximum of these three numbers. In the following
flowchart it has been shown that how to implement selection staments like if..else in
flowchart.

At first we are comparing first two numbers NUM1 and NUM2. If NUM1 is
greater than NUM?2 we need to compare.

Flowchart:

€D

Accept Num1, Num2, Num3

Display Display Display Display
Num2 Num3 Num3 Numi

A
(Stop)

Principles of Programming and Algorithm 6 > 20 Introduction to Problem Solving

CiIs@
What is problem solving?
Which are different techniques used for problem solving? Explain in detail
Discuss the advantages of Divide and Conquer method.
Which are the different steps in problem solving?
Give the definition of algorithm and flowchart.
Which are the characteristics of the algorithm.
What is a time complexity? (Explain along with Big Oh Notation)
What is Pseudocode? Expiain with example
Write an algorithm, flowchart and time complexity for the following:
1. Factorial of a given number
11. Addition of two metrics
1. Sorting the given data

1v. Check whether the given number is prime or not.

SIMPLE ARITHMETIC
PROBLEMS

7.1 PROGRAM FOR ADDITION OF TWO
INTEGERS

2

#include<stdio.h>
#include<conio.h>
void main()

/*Declaration of variable */
int Numberl, Number?2, Sum;

clrscr();
printf("\n Enter First Number :"); /* Input First Number */
scanf ("%d", &Numberl) ;
printf("\n Enter Second Number :"); /* Input Second Number */
scanf ("%d", &Number?2) ;
Sum=Numberl + Number2; /* Addition of Two Number */

printf("\n Addition is : %d",Sum); /* Output of Sum */
getch{();

[

Oulput

Enter first number : 23

Enter second number : 17
Addition: 50

7>»1

Principles of Programming and Algorithm 7»2 Simple Arithmetic Problems

7.2 PROGRAM FOR MULTIPLICATION OF
TWO INTEGERS

#include<stdio.h>
#include<conio.h>
void main()
{
/*Declaration of variable */
int Numberl,Number?2, Sum;

//clrscr();

printf("\n Enter First Number :"); /* Input First Number */
scanf ("%d", &Numberl) ;

printf ("\n Enter Second Number :"); /* Input Second Number */
scanf ("%$d", &Number?2) ;

Sum=Numberl * Number?2; /* Multiplication of Two Number */

printf("\n Multiplication is : %d",Sum); /* Output of Sum */
getch();

[

Output

Enter first number: 3
Enter second number : 12
Multiplication is: 36

7.3 PROGRAM FOR DIVISION OF TWO
INTEGERS

2

#include<stdio.h>

#include<conio.h>

void main()

{

/*Declaration of variable */
int Numberl, Number?2,Div;

clrscr();

printf ("\n Enter First Number :"); /* Input First Number */
scanf ("%d", &Numberl) ;

printf ("\n Enter Second Number :"); /* Input Second Number */
scanf ("%$d4d", &Number?2) ;

Div=Numberl / Number?2; /* Division of Two Number */
printf("\n Division is : %d4",Div); /* Output of Division */
getch() ;

=)

Principles of Programming and Algorithm 7»3 Simple Arithmetic Problems

Oulput

Enter First Number: 55
Enter . Second Number: 5
Division is: 11

7.4 PROGRAM FOR DETERMINING NUMBER
IS +VE OR -VE

2

#include<stdio.h>
#include<conio.h>
void main()

{

int Number;

clrscr();

printf ("\n Enter Number :");

scanf ("%4", &Number) ;

/* Check Number is Negative or Positive */
if (Number<0)

{

}

else

printf{"\n Number is Negative");

printf ("\n Number is Positive");

}

getch();
} o
=]
Output
., Enter Number: - 4

Number is Negative

7.5 PROGRAM FOR DETERMINING NUMBER
IS ODD OR EVEN

£

#include<stdio.h>
#include<conio.h>
void main()
{
int Number;
clrscr () ;
/* Get Number */
printf("\n Enter Number :");

Principles of Programming and Algorithm 7>4 Simple Arithmetic Problems

scanf ("%d", &Number) ;
/* Check Number is Even or 0dd */
1f ({Number%2)==0)

{
printf ("\n Number is Even");
}
else
{
printf("\n Number is cdd");
}
getch ()
} [
Ouliput

Enter Number: 3
Number is 0dd

7.6 PROGRAM FOR FINDING MAXIMUM OF
TWO NUMBERS

]

#include<stdio.h>
#include<conio.h>
void main()
{
int Numberl, Number?2;
//clrscr();
/*Get Two Number*/
printf ("\n Enter First Number :");
scanf ("%d", &Numberl) ;
printf ("\n Enter Second Number :");
scanf ("%d", &Number?2) ;
/*Check Maximum Number*/
if (Numberl>=Number2)
{
printf("\n First input number is maximum") ;
}
else
{
printf ("\n Second input number is Maximum");
}
getch{()

Principles of Programming and Algorithm 7»5 Simple Arithmetic Problems

Oulput

Enter First Number: 69
Enter Second Number: 4
First input number is maximum

7.7 PROGRAM FOR FINDING MAXIMUM OF
THREE NUMBERS

#include<stdio.h>
#include<conio.h>
void main ()
{
int Numberl, Number2, Number3;
//clrscr();
/*Get Three Numbers */
printf("\n Enter First Number :");
scanf {"%d", &Numberl) ;
printf("\n Enter Second Number :");
scanf ("%d", &Number?2) ;
printf{("\n Enter Third Number :");
scanf ("%$d", &Number3) ;
/*Check Three Numbers For Maximum*/
if ((Numberl>=Number2) && (Numberl>=Number3))
{
printf{("\n First input number is Maximum") ;
}
else
{
if ((Number2>=Number3) && (Number2>=Number3))
{
printf{"\n Second input number is Maximum") ;
}
else
printf("\n Third input number is Maximum") ;
}
getch();

Oultput

Enter First Number: 43

Enter Second Number: 87

Enter Third Number: 12

Second input number is Maximum

Principles of Programming and Algorithm 7»6 Simple Arithmetic Problems

7.8 PROGRAM OF SUM OF FIRST N
NUMBERS

=]
#include<stdio.h>
#include<conio.h>
void main()

{ .
int Number, i=0, Sum=0;
clrscr();

/* Get Number */

printf ("\n Enter Number :");
scanf ("%d", &Number) ;

/* Sum of N Numbers */
for(i=1;i<=Number;i++)

Sum+=1 ;
printf("\n Sum of N Numbers : gd", Sum) ;
getch();
} -
Output

Enter Number: 8
Sum of N Numbers: 36

7.9 PROGRAM FOR REVERSING INTEGER
NUMBER

] —
#include<stdio.h>
#include<conio.h>
void main()
{
int Numberl, Number?2;
clrscr{);
/* Get Number */
printf ("\n Enter Number :");
scanf ("%d", &Numberl) ;
printf("\n Reverse of Integer :");
/* Reverse Number */
while (Numberl>0)
{

Number2=Number1%10;

Numberl=Numberl/10;

printf ("$d", Number2) ; }
getch () ;

Principles of Programming and Algorithm

7»7

Simple Arithmetic Problems

Output

Enter Number: 12345
Reverse of Integer: 54321

7.10 PROGRAM FOR TABLE GENERATION OF

N NUMBER

2

#include<stdio.h>
#include<conio.h>
void main()
{
int Number, i=0,j=0,k;
clrscr();
/* Get Number */
printf ("\n Enter Number
scanf ("%d", &Number) ;
if (Number<=5)
k=2;
else
k=1;
/* Print Table Here */
for(i=1;i<=Number*k;i++)
{
for(j=1;j<=Number;j++)
{

}
printf("\n"):
}
getch () ;

printf ("%d\t",3*1);

")

Output

Enter Number: 5

10

12

15

12

16

20

15

20

25

18

24

30

21

28

35

24

32

40

27

36

45

Slojo|N[o|oswin (=

30

40

50

Principles of Programming and Algorithm 7>8 Simple Arithmetic Problems

7.11 PROGRAM FOR FACTORIAL

#include<stdio.h>
#include<conio.h>
void main ()
{
int Number, Factorial=1,1i=0;
clrscr();
printf{"\n Enter Number :");
scanf ("%d", &Number); /* Input Number */
if (Number<=0)
Factorial=l; /* Assign 1 to If Number Is Less than 0 */
else
{
for(i=1;i<=Number;i++)
{
Factorial*=i; /* Calculate Factorial */
}
}
printf("\n Factorial is : %d",Factorial):; /* Print Factorial */
getch () ;

} (]

Oulput

Enter Number: 5
Factorial is: 120

7.12 PROGRAM FOR FINDING SINE OF A
NUMBER

(]
=
#include<stdio.h>
#include<conio.h>
void main()
{
float Number;
clrscr();
printf ("\n Enter Number :");
scanf ("%$£f", &Number); /* Input Number */
printf("Sine of a Number is : %f",sin(Number));/* Print Sine of
Number */
getch();
}

fa]

Principles of Programming and Algorithm 7»9 Simple Arithmetic Problems

Output

Enter Number: 2
Cosine of a Number is: 0.3489

NUMBER

PROGRAM FOR FINDING COSINE OF A

#include<stdio.h>
#include<conio.h>
void main()
{

float Number:

clrscr();
printf (*\n Enter Number :"):
scanf ("$f", &Number); /* Input Number */
printf("Cosine of a Number is - $f",cos (Number)); /* Print
Cosine of Number */
getch() ;
}
Output

Enter Number: 0
Cosine of a Number is: 1.000000

PROGRAM FOR COMBINATIONS

i

#include<stdio.h>
#include<conio.h>
float fact (float):
void main ()
{
float n,r,np=0,rf=0,rp=0, nrp=0;
clrscr();
printf{"\n Enter Distinct Element n: ")
scanf ("%$f", &n) ;
printf("\Enter r :");
scanft ("%f", &r) ;
np=fact(n) ; /* Calculate Combinations */
rf=fact (r):;
rp=fact(n-r);
nrp=np/{rf*rp) ;

Principles of Programming and Algorithm 7> 10 Simple Arithmetic Problems

printf ("Number of Combinations is : $f",nrp);/*Print
Combinations */
getch();
}
float fact(float Number)
{
float Factorial=1l,i=0;
if (Number<=0)
Factorial=l; /* Assign 1 to If Number Is Less than 0 */
else

for (i=1;i<=Number;i++)

{
}

Factorial*=i; /* Calculate Factorial */

}
return Factorial;

}

Oulput

Enter Distinct Element n: 5
Enter r: 2
Number of Combinations is: 10.000000

7.15 PROGRAM FOR PERMUTATION
L

#include<stdio.h>
#include<conio.h>
float fact(float);
void main()

{
float n,r,np=0,rp=0,nrp=0;
clrscr();
printf{("\n Enter Distinct Element n: ")

scanf ("%$f",&n);
printf("\n Enter r :");
scanf ("%£f",&r) ;
np=fact(n) ; /* Calculate Permutations */
rp=fact (n-r};
nrp=np/rp;
printf ("Number Permutation are :%f" , nrp);/*Print Permutation */
getch();
}
float fact(float Number)
{
float Factorial=1l,i=0;
1f (Number<=0)
Factorial=1l; /* Assign 1 to If Number Is Less than 0 */
else

Principles of Programming and Algorithm 7> 1 Simple Arithmetic Problems

{
for (i=1; i<=Number;i++)
{
Factorial*=i; /* Calculate Factorial */
Pl
return Factorial;

}

Oulput

Enter Distinct Element n: 5
Enter r: 2
Number Permutation are: 20.000000

7.16 PROGRAM FOR PASCAL TRIANGLE
o

#include<stdio.h>
#include<conio.h>
void main()
{
int i=1,3j=1,k=1,1=0;
clrscr();
/* Print Pascal Tringle */
for(i=1;1i<=5;1i++)
{
for(1l=5;1>=i;1--)
printf (" *);
for(j=1;3<i;j++)

printf (" %d",j);
%or(k=j;k>=l;k-—)
{ printf (" %d*,k);
;rintf("\n\n");
}éetch();

Oufput

N -
w N
=W
Ui WP
W NP
W N =
[\

Principles of Programming and Algorithm

7» 12 Simple Arithmetic Problems

7.17 PROGRAM FOR FINDING PRIME
NUMBER
) -
#include<stdio.h>
#include<conio.h>
void main()
{
int Number,i,3j;
clrscr();
/* Get Number */
printf("\n Enter Number :");
scanf ("%d", &Number) ;
/* Check Number is Prime or Not */
for (1=2;i<Number; i++)
{
if ((Number%i) ==0)
{
printf ("\n Number is Not Prime : %d", Number):
getch();
return;
}
}
printf ("\nNumber is Prime 2d" , Number) ;
getch();
} .
R AR TS P R 3 e ST SRR e T TR “ «H
Oulput

Enter Number: 7
Number is Prime: 7

7.18 PROGRAM TO

NUMBER

FIND FACTORS OF A

g
#include<stdio.h>
#include<conio.h>
void main()
{
int Number,i,3j.k=2;
clrscr();
printf("\n Enter Number :");
scanf ("%d", &Number) ;
k=Number ;
for (i=2;i<=Number;i++)

Principles of Programming and Algorithm 7%»13 Simple Arithmetic Problems

i

1S
for{j=Number;j>=2;9--)

1if(({i*3j)==k)
{

printf ("%dx%d", 1, 7)) ;

break;
}
}
K=
1
I
getch()

Ontpui

Enter Number: 12

2X6 3IXZ

PROGRAM FOR GREATEST COMMON
DIVISOR BETWEEN TWO NOS

L e —

finclude<stdio. h>
#include<conio.h>
void main{)

I
L

int Numbze:
clrscr{);
/*Get Two Numbeirs*/
printf ("\n E: Frrst Numbor)
scanf ("%d", &Nialber i) ;
printf("\n Ent . Sccond Number ") ;
scanf ("%d", SNumber2) ;
/*Assign Maximum Number* /
1f (Numberil>Nunber?2)

i=Numberi;
clse

i=Numbexr?;
for{;i»=1;1--)

{

LoNumbor2, 1, 0

1f ({(Numberl%i)==0 && {(Nuriber2%1i)==0)/* Calculate Factorial~*/
break;
3

printf ("\n GCD Between Two Numbers $BdY, 1) ;
getch () ;

Principles of Programming and Algorithm 7> 14 Simple Arithmetic Problems

Oulput

Enter First Number: 15
Enter Second Number: 3
GCD Between Two Numbers: 3

7.20 PROGRAM FOR SWAPPING OF TwWO
INTEGERS

#include<stdio.h>

#include<conio.h>

void main()

{
int Numberl, Number2, Temp;
clrscr();
/*Input Two Numbers*/
printf ("\n Enter First Number :");
scanf ("%d", &Numberl) ;
printf ("\n Enter Second Number :");
scanf ("%d", &Number2) ;

/*Swapping of a Number*/

Temp=Numberl;

Numberl=Number?2 ;

Number2=Temp;

printf("\n Number 1 is :%d \n Number 2 is :%d", Numberl, Number?2) ;

getch();
}]

Output

Enter First Number: 3
Enter Second Number: 6
Number 1 is: 6

Number 2 is: 3

1. Find the cutput of the following program:
#include<stdio.h>
int a=0; /* This is a global variable */
void foo(void) ;
int main(void)
{
int a=2; /* This is a variable local to main */
int b=3; /* This is a variable local to main */
printf('l. main b = %d\n", b);
printf('main_a = %d\n", a);
foo ()
printf{("2. main_b = %d\n", b);

Principles of Programming and Algorithm 7% 15 Simple Arithmetic Problems

void foo(void) {
int b=4; /* This i1s a variable local to foo */

printf("foo_a = %$d\n", a);

printf("foo_b = %d\n", b);
} .
2. Study the below program and explain the call to functions and their response

#include<stdio.h>

/* Examples of declarations of functions */

void squarel (void); /*Example of a function without input
parameters and without return value*/

void square2(int i); /*Example of a function with one input
parameter and without return value */

int square3(void); /*Example of a function without input
parameters and with integer return value */

int squared (int 1i); /*Example of a function with one input
parameter and with integer return value */

int area{int b, int h); /*Example of a function with two input
parameters and with integer return value */

/* Main program: Using the various functions */
int main (void)

{

squarel () ; /* Calling the squarel function */

square2 (7); /* Calling the sguare2 function using 7 as actual

parameter corresponding to the formal parameter i */

printf ("The value of square3() is %d\n", square3()); /*¥Ysing the
squarel3 function */

printf ("The value of square4(5) is %d\n", squared(5));/*Using

the squared4 function with 5 as actual parameter corresponding to
i*/
printf ("The value of area(3,7) is %d\n", area(3,7));:;/* Using
the area function with 3, 7 as actual parameters corresponding
to b, h respectively */
}

/* Definitions of the functions */

/* Function that reads from standard input an integer and prints
it out together with its sum */

void sqguarel (void)

{

int x;
printf("Please enter an integer > ");
scanf ("%d", &x);

printf ("The sguare of %d is %d\n", x, x*x);
}
/* Function that prints i together with its sum */
void square2 (int 1)
{
printf ("The sqguare of %d is %d\n", i, i*i);
}

/* Function that reads from standard input an integer and returns
its square */

~_Principles of Programming and Algorithm 7> 16 Simple Arithmetic Problems

int squarel(void)
{ .
int x;
printf ("Please enter an integer > ");
gscanf ("%d", &x);
return (x*x);

“* Function that returns the square of 1 */
int sguared (int 1)
{
return (1*%*1i);
1
/* Function that returns the area of the rettangle with base b
and hight h */
int area(int b, int h)
!
1
return (b*h);

}

B. Programming exercises

1. Write a program in C to find the roots of equation using quadratic equation
formula.

2. Write a program in C to find largest of n numbers.

3. Write a program in C to sort numeric integer n in ascending order.

4. Make use of two dimensional arrays to show addition of two matrices.

5. Use while loop and generate tables 1 to 10.

. Write a program in C to demonstrate use of nested for.

7. Write a program in C to find proper factors.

8. Write a program in C to accept your name, age and address.

T R T S SRR Ghis

FUNCTIONS|

8.1 INTRODUCTION

Functions are the building blocks of C and ave rentral 1o programming and to
the philosophy of C program design.

main() is the function where execution begins. The other functions are execiited
when they are called directly or indirectly by main.

It is mandatory to have a single wam() funciion in wvery progiam. fo ihe
following sections, we shall be studying more aboul maw ¢

8.2 WHAT I8 A FUNCTION®

The program development cycle includes problent avalysis,
design and coding. The code 15 a sci of st tons v g logica! sequence, which
performs the specified task. ‘Real world' applicalions programs are Jarge end
complex. Therefore it is more 1()(}h<n and convenianl o Iy ‘
smaller, compact and more manageaiic

wl other linctions.

finiiian

moduies, called functions.

Definition

A function is a named, Independent or self-coniai
performs a specific, well defined task and may return a

e A function is named. Each function is identifi
{or called) using this name.

by o uilgue nans

¢ A function is independent. Ti can perforra fhic taxk ou il own, 1
own variables and constaiis to be used only within the luncdon.

o It performs a specific task: A funciion is given a dicerole job to porform as a past of
the overall program. The task hes to be well defined.

e [t can return a value to the calling pxcqravr
and optionally return infor mdn(m to the calling nroqra

Bri1

Principles of Programming and Algorithm 8 »2 Functions

8.3 FUNCTIONS AND STRUCTURED
PROGRAMMING

Functions and structured programming are closely related. In structured
programming, independent sections of program code perform program tasks.

@Advantages of fanctions
1. Modular or structured programming can be done by the use of functions.

2. By following the top-down approach, the main function can be kept very small
and all the tasks can be designated to various functions.

3. Troubleshooting and debugging becomes easier in structured programs.

4. Individual functions can be easily built and tested.

5. Program development becomes very easy.

6. It is easier to understand the program logic.

7. Multiple functions can be developed and tested simultaneously thereby

reducing the program development cycle time.

8. A repetitive task can be put into a function that can be called whenever
required. This reduces the size of the program.

9. Frequently used functions can be put together in a customized library.
10. A function can call other functions. It may even call itself. This technique called

recursion is very useful in solving complex problems and writing a compact
code.

HOW A FUNCTION WORKS?

A C program does not execute the statements in a function until the function is
invoked or called. When the function is called, control passes to the function and
returns back to the calling part after the execution of function is over.

The calling program can send information to the functions in the form of
argument.

An argument stores data needed by the function to perform its task. Functions can.
send back information to the program in the form of a return value.

Function calls and returns can be illustrated by the following example.

Principles of Programming and Algorithm 8 »3 Functions

main () y funct ()

Lw func3 ()
{ / é 3 () // {
/* call to fW une3 ()l |
funct (=" || e .

/* call to func2 () */

4
—

func2 (); > func2 ()
............ { o
} \\}

main () calls func1() and func2 (); funct () calls func3 ()
Figure 8.1

Note: A function can be called as many times as needed and can be written and
called in any order.

8.5 LIBRARY AND USER DEFINED
FUNCTIONS

In a C program, functions are of two types.

1. Pre-defined functions or library functions.
2. User defined functions.
Function
Library I [User Defined

The pre-defined or library functions are pre written, compiled and placed in
libraries. They come along with the compiler.

User defined functions are written by the user and the user has the freedom to
choose the name, arguments (number and type) and return data type of the function.

One of the greatest features of C is that there is no conceptual difference between
the user defined functions and library functions. A user can write functions, collect
them and put them into a library, which can be used by anyone.

In this chapter we shall be mainly studying user defined functions.

Standard Library Fanctions

Some commonly used library functions are given in the table below. We shall be
using some of them in the later chapters. To use a library function in a program, its
corresponding header file must be included in the program.

Principles of Frogramining and Algerithin & »4 Functions
1.
Function Prototyoe Purpose
getchar | int getchar (void) gets a character from stdin
putchar | int putchar (int ¢) writes a character to stdout
gets char *gets {char *) gets a string from stdio
puts int puts (const char) outputs a string to stdout
printf int printf(corst ch writes a character to stdout
) P X scans and formats an input
scanf int scanf {const) ’
: from stdin
. int sprintf {(char* buifer, char * format, [argument , | writes formatted output to a
sprintf . : .
Ch] string
sscanf | Ntssenf {const char * huffer, const char * format , | scans and formats input from
o [address, 1) ,)) a string
fflush int filush (file *y; B flushes a stream

Purpose
turns the absolute value of x
Returns cosina of x (x is in radians)
Calculates e

Returns the largest integer < = x
Returns natural log of x

pow now {double Calculates x
sin > sin {double x) Calculated sine of x
st sle sgrt{double x) Calculates square root of x
Lo
Function Purpose

cirsar

clreotf

getch

wingdow

from console. No echoing

int putch (int chy | O

ich but echoes to screen. No buffering is done
ieger corresponding to a keystroke
racter {0 the text window on screen

Principles of Programming and Algorithm 8 »5 _Functions

4. stdlib.h
Function Prototype Purposs
atof double atof (const char *s) Converis a string 1o float
atoi double atoi (const char *s) Converts a string to int
atol double atoll (const char *s) Converts a string to long
random int random (int num) Returns an integer between 0 and (num-1)
. . . . initialize the rangum number generator with a
randomize | void randomize (void) et His e - gene Wi e
| random vajue
system int system (const char * commaind} | Used ic execute ‘rx MS-DOS command

FUNCTION DECLA
DEFINITION
Just as variables used within a progran

1
The function declaration is called the i‘v
following information to the compiler.

i BT T
Iy Z\‘V iy

¢, s0 as the functions.
and 1t provides the

¢ The name of the function.
o The return data type (optional, default is integer).

e The number and type of arguuments that =wvill b pas
argument names need not be specified.).

A prototype should always end with a semicoicn.

=i to the function. (The

Syntax:

[return-type function_name (type argl, type arg2 ...) ;]

Examples:

i. int sum(int a, int b, int c¢); OR int sum({int, int, int);

i1. wvoid display(void);

iii. double square(double number);

Fuanction definition

The function definition is the actual function. The definition contains the code that
will be executed. The first line of the definition called the function header should be
identical to the function prototype with the exception of the semicolon. The argument

names have to be specified here. More about this, it the next section.

s

Principles of Programming and Algorithm 8 »6 Functions

WRITING A FUNCTION

Each function definition has the following form.

Return_type function_name (parameter list)
{

declarations;

statements;

}

The function header

The first line of every function is the function header, which has three
components.

a.

The function return type

This specifies the data type that the function returns to the calling program. If
the function does not return a value, the return data type of void is used.
Examples:

int funcl (....) /* Returns an integer value */
float func?2 (....) /* Returns a type. float */
void func3d (....) /* Returns nothing */ . .

The function name R

{F

The function name can be any valid C identifier. The function name has to be

unique and it should be preferably named so as to reflect the purpose of the
function

The parameter list

Function parameters are the means of communication between the calling and
the called functions. They can be classified as:

e Formal parameters (or parameters), which are given in the function header.
¢ Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type and name of the parameter. Commas
separate multiple parameters. For each argument passed in the function call there
has to be corresponding parameter in the parameter list in the function headers with
the same data type and the order in which arguments are sent. Examples as follows:

i.

ii.

main()

{ int x,y, result;

result = sum(x,y);} /* function call */ }
int sum{int a, int b) /* function definition */

{return a + b};

In this example, sum is a function accepting two integers and returning an
integer. x and y are the actual parameters. a and b are the formal or dummy
parameters.

float area(float radius)

area is a function returning a float and accepts one float argument.

Principles of Programming and Algorithm 8 »7 Functions

iii. int max(int a, int b, int c¢)

max is a function accepting three integers and returning an integer.

iv. int random(void)

This function returns an integer but takes no arguments.
The function body

The function bodyis enclosed in braces and immediately follows the function
header. It consists of,

a. Declarations: You can declare and initialize variables within a function. These
are called local variables, which means that they can be used only within that
function.

Example:

float area(float radius)

{ float result;
const float pi = 3.142;
...... /* function code */
...... }

b. Function statements: These statements perform the specified task. There is no
limitation on the statements that can be included within a function.

However, another function cannot be defined in a user-defined function.

c. The return statement: The keyword return is used to terminate the execution
of the function and return program control to the calling program.

Syntax:
return;
Example:
if (n< 0)
return;
It is also used to return a value to the calling program. (A function can accept
any number of values but can send back only one)
Syntax:

return {(expression);
OR
return expression;

Example:

return{(0) ;
return(a+b) ;
return ++i;

A return statement at the end is optional for functions not returning a value. There
may be multiple return statements within a function but only the first return
statement encountered during control flow will be executed.

Principles of Programming arid Algorithm 3 >»8 Functions

Example:
int max(int a, int b
i LE (a»h)

return a;

b

CALLING A FUNCTION

Y function can be called by two ways:

i Any function can be called by simply using ils name and arguments alone in a
statement as shown. If the funciion has a return value, it is discarded.

Example:

disp_message();

\

lisplay. value(x};

2. The second method can be used only with functions that return a value. Since
they return e value, they can be used anywhere a C expression can be used: in
a printf statement, on the right side of an assignment operators,etc. Here are
somaoe examples.

i. printf (“Square of %d is % d“,x, square(x)):
ii. area = calculate_area(radius):
iii. Sum_of_all = sum{a,b) + sumlc,d):
ive. 1if (sum(a.b)>100}
{

/* statements */ }
V. maximum = max{a,b);
vi. max_of_three = max{C, maxia,b)):

Types of functions

3. Functions with no arguments end no return vaiues

These functions do not take any information trom the calling tunction nor do
they pass back any value. Such functions are commonly used to display
nessages.

EZxample
i.

#finclude<stdio.h>
main()

{ void greet (voidj; /* function prototype */
greet{): /* function call */

}
void greet (void) /* function definition */

{ printf("\n Hello and welcome to C*};

Principles of Programming and Algorithm 8 »9 Functions

2.

#include<stdio.h>

main()

int n;

void error_msg(void) ;

printf (*Enter the value of n :7);
scanf (“%d4”,&n);

{

if
{

(n<0)
error_msg();
exitc();

void error_msg(void)
printf (“*Error ! Negative value”):

Fanctions with argaments and no retarn value

Here, the function accepts arguments but does not return any value back to the
calling program. It is a one way communication i.e calling program to function.

In such functions, the result of operations on the arguments may be displayed
from the function itself.

Example

Demonstrate functions

/* Calculate and display the area of a circle */

#include<stdio.h>

main{)
{ float radius:
void area(float); /* function prototype */

printf (“Enter the radius :7)
scanf (“%f” ,&radius);
area{radius) ;

void area(float r)

{

float result ;

const float pi = 3.142;

result = pi*r*r;

printf (*The area is %f”, result);

Function accepting arguments and returning a value

Such a function accepts information and also returns back a value to the calling
program. Thus, there is a two way communication between the two.

Example: We shall modify the above program such that the function area now
returns the calculated value back to main.

Principles of Programming and Algorithm 8 »10 Functions

L]
Q /* INlustrate function returning a value */
#include<stdio.h>
main{)
{ float radius, a;
float area(float);
printf (*Enter the radius :”);
scanf (“%f”, &radius);
a = area(radius);
printf(*\n The area is %f”, a);
float area(float r)
{ const float pi = 3.142;
return(pi*r*r) ;

y
7

8.9| PASSING ARGUMENTS TO A FUNCTION

There are two mechanisms to pass arguments to a function.
1. Call by value
2. Call by reference

In C all function arguments are “passed by value". This method copies the value
of an argument into the formal parameter of the function. Changes made to the
formal parameters have no effect on the arguments in the calling function.

The following example illustrates this concept.

L

== /* Program to demonstrate call by value */

#include<stdio.h>
main()
{ int num = 10;
void modify({int) ;
printf (*The value of num is %d”,num);
modify (num) ;
printf (*\n In main the modified value is %d” num);

void modify{(int num)
{ num = 20;
printf(*\n In the function num is % 4", num);

Output
The value of num is 10
In the function num is 20
In main the modified values is 10

Principles of Programming and Algorithm 8 » 11 Functions

In the above program, the variable num has a value 10. When the function is
called, this value gets copied into the variable num which exists only in the function
modify. So, even if its value is changed it does not affect the variable in main. As soon
as the function modify ends, the variable num in this function ceases to exist. Back in
main, the variable num still retains its original value.

Example:

Here is another program demonstrating call by value. The aim is to interchange
the values of fwo numbers.

L
= /* Ilustrate call by value */
#include<stdio.h>
main(}
{ int a=10, b=20;
void swap (int, int) ;
printf{“Before interchange a=%d,b=%d", a,b);
swap(a,b);
printf (*\n After interchange a=%d b=%d” a,b):
r
void swap(int x,int vy)
{ int temp;
temp=x; x=y; y=temp;
printf(*\n In the function x=%d y=%d", x,y):

}

Output
Before interchange a=10 b=20
In the function x=20 y=10
After interchange a=10 b=20

In this program, the values of a and b get copied into variables x and y
respectively. The function swap interchanges the values of x and y but the values of
a and b remain unchanged.

The function can access only the variable value but not the original copy of the
variable. Thus, it cannot modify the original variable. An exception to this rule is
when an array is passed to a function. Arrays will be covered in details in the next
chapter.

Advantage: Passing by value is the default method to protect data from
inadvertent modification.

Call by reference

In this method of passing arguments, the called function has access to the original
argument, not the local copy. Languages like Pascal and Fortran allow this method.

Although the C language allows passing of arguments only by value the call by
reference method can be simulated by the use of addresses and pointers. This allows
the function to directly access the original variables and modify their values.

Principles of Programming and Algorithm 8 » 12 Functions

We will rewrite the program to interchange two numbers but in a slightly different
way.

LI
‘Lil /* Creating a call by reference to swap two numbers */
#include<stdio.h> ‘
main{)

{ int a= 10 , b = 20;

void swap(int *x , int *y):
printf (*Before swapping a
swap (&a, &b);

printf (“\n After swapping a = %d b = %d”, a,b);

i~
o
[oX
o

|
oP
Q:
o
g

void swap(int *x, int *y)
{ int temp;
temp = *x; *x=*y; *y=temp;

)

In the above program, the values of variables a and b have to be interchanged by
the function swap. This will only be possible if the function has an access to the
original variables. Since it is not possible by the call by value method seen earlier,
some other method has to be used.

Since the addresses (memory location) of the variables are unique, if the function
is given the address of the variable instead of its value, the function will be directly
referring to the original variable. Thus, the addresses of variables a and b are passed
using the & (address) operator.

The addresses need to be stored in special variables called as pointer variables,
declared as int *x and int *y. The =operator is used to access the variable whose
address is stored in its operand. Thus, "x refers to variable a and "y refers to

variable b. Thus, by altering °*x and 'y, we are altering the values of a and
b respectively.

FUNCTIONS WITH VARIABLE
ARGUMENTS

It is possible to declare functions with variable numbers of arguments. Such
functions are called “Variable” functions. Some standard library functions can accept
a variable list of arguments (such as printf).

A function is also defined as variable using an ellipsis ('...") in the argument list.
The function is called by passing fixed arguments followed by the additional variable
arguments.

Example

int funcl{(intx, ..)
{
}

Principles of Programming and Algorithm 8 »13 Functions

Here, funcl is a function with one fixed argument and the ellipsis indicates
variable arguments.

Accessing variable arguments

Since variable arguments have no names, they must be accessed sequentially
using special macros from “stdarg.h”. These macros are:

i. va_list
1i. va_start
iil. va_end
Example

int addnos(int count,...)
{ wva_list ab;
int 1, sum;

va_start(ab, count); /* Initialize the argument list */
sum = 0 ;
for (1 = 0; 1 < count i++)
sum = + va_arg(ab,int); /* Get next argument®*/
va_end{ab) ; /* clean up*/
return sum;
}
main()

{ printf(*%d\n“, addnos(3,5,5,6));

/* This prints 16 */
printf(*% d\n”,addnos(5,10,20,30,40,50));: /* This prints 150%*/

COMMAND LINE ARGUMENTS

So far we have been using main with an empty pair of parentheses. In
environments that support C, there is a way to pass arguments or parameters to main
when it begins executing i.e. at runtime.

These arguments are called command line arguments because they are passed
from the command line during run time.
main is called with two arguments

i intargc - argument count which is the number of command -line arguments
the program was called or invoked with.

il char " argvi] - Argument vector. It is an array of pointers each pointing to a
command line argument.

Declaration of main

When main has to accept command line arguments, it has to be declared
differently. It is declared as
main(int argc, char *argv[1)

Principles of Programming and Algorithm 8 »14 Functions

e The subscripts for argv]| | are 0 to argc-1.
e argv|0] is the name of the program.

o It is not necessary to use the words argc and argv and any others will also do.
However, they are used conventionally, so it is better to stick to them.

o The arguments have to be separated by white spaces. If a space is to be given as a

part of an argument, the argument along with the spaces can be specified in
double quotes.

Example:

A simple program is the program Display which echoes its command line
arguments on the screen. If the command is given as

Display argument! 10 abcd
The output should be
argumenti 10 abcd

For this example argc = 4 and the arguments will be stored as:

argv
Display \0
argv [1] R — Argument \O

argv [2] —] 10\0

argv [0]

argv [3]] abcd \O
argv [4] null

i

The program will be:
Examples

1. /* Displays command line arguments */

#include<stdio.h>
main(int argc, char *argv(])

{ . .
int 1;
for (i = 1; i< argc ; i++)
printf (“*%s%s”,argv(i],™ "); -
3
2. /* This displays all the command line arguments in the reverse order*/

#include <stdio.h>
main(int argc, char *argv [])
{
while (-- argc > = 0)
printf(“%$s %s”, argvlargc],“ ");

[—

Principles of Programming and Algorithm 8 »15 Functions

Advantages of command line arguments

L. Arguments can be supplied during runtime. Therefore the program can accept
different arguments at different times.

1. There is no need to change the source code to work with different inputs to the
program.

Example: If a program is to be written without using command line arguments

for copying the contents of one file to another, both filenames will have to be
specified in the program.

By using command line arguments, the program can be run with different file
names every time since the code in the pregram will refer to them using argv] |

i, There's no need to recompile the program since the source code is not changed.

We shall be studying more about command line arguments.

8.12 RECURSION

Recursion is a process by which a function calls itself either directly or
indirectly. It is called circular definition. Direct recursion is when a statement in the
body of the function calls itself. Indirect recursion occurs when the function calls
another function, which in turn makes a call to the first one. They are commonly used
in applications in which the solution to a problem can be expressed in terms of

successively applying the same solution to subset of the problem. Two important
conditions should be satisfied by any recursive function.

. Each time the function is called recursively it must be closer to the solution.
. There must be some terminating condition, which will stop recursion.

There are many examples of recursion. One of the most common example is the
calculation of the factorial of a numbers. The factorial can be stated as

1. The factorial of 0 is 1 and the factorial of any positive integer is the product of
all integers from 1 to n.

2. The factorial of 0 is 1 and the factorial of any positive integer n is the product of
n and the factorial of number n-1.

The first definition is iterative while the second is recursive and represented as

Principles of Programming and Algorithm

8 » 16

Functions

(]

s 7

#include<stdio.h>

main()

{ unsigned int num;
unsigned int factorial (int n);
printf (*\n Enter the value of the number:”);
scanf ((“%d”, &num) ; .
printf(*\n The factorial of %4 is %u” ,num, factorial (num));

}

unsigned int factorial (unsigned int n)

if (n ==0}|n ==1)
return(l);

else

return

(n* factorial(n-1))

Using a recursive function to calculate factorial */

Output

Enter the value of the number:

The factorial of 3 is 6.

The function calls are depicted below:

ie. 3!

il

from
n=g3 | main

3

fo
main

| 3 * factorial (2)

I return3*2* 1 |

n=2
L, 2 ~ factorial (1) l return 2 * 1 I
n=1
I no further calls return 1 |
Figure 82

3 * factorial (2)

3 * 2 * factorial (1)
3*21

6

L]
(=Y

Principles of Programming and Algorithm 8 » 17 Functions

Pisadvantage

Recursive functions may not provide saving in storage since a stack of values is
being processed has to be maintained by the system.

It will not be faster than iterative functions because function calls and returns
take longer.

fidvantage

However, recursive code is much more compact and often much easier to write
and understand than the non-recursive equivalent.

More examples of recarsion

1.

]

Computation of Fibonacct series

0,1,1,2,3,5 8,

Each element in this sequence is the sum of the two preceding elements. The
series can be defined by the relations.

fib(n)=n ifn== orn==
fib (n) = fib (n-2) + fib (n-1) if n>=2.

The following program displays the first ‘'n’ fibonacci numbers using a recursive
function to calculate the n™ fibonacci number.

== /* Fibonacci series */

#include<stdio.h>

main ()
{ int num, 1;
unsigned int fib(int); */ function prototype */

printf (*How many numbers: “);
scanf (“*%d”, &num) ;

printf(*\n The first %d, fibonacci numbers are : \n” num);

/* display the n numbers */
for (1=0; i<num, 1++)

}

printf (*$u\t”, £ib(i));

unsigned int fib(int n)

{

if (n<=1)
return (n);
return (fib(n-2) + fib (n-1));

Principles of Programming and Algorithm 8 »18

Output

How many numbers : S

The first 5 fibonacci numbers are

01 1 2 3

The recursion tree in the calculation of the fifth fibonacci number is:

Figure 8.3 : Recursion Tree

2. The recursive relation can define calculation of Greatest Common

(GCD) of two positive integers.

ged (xy) = x ify==
ged (x,y) = ged (y,x%y) otherwise

The recursive function can be written as:

int ged(int x, int vy)
{
if (y==0)
return (x)
else
return (gcd(y,x%y));

and it can be used in main as

Divisor

Principles of Programming and Algorithm 8 »19 Functions

[
g‘ /* Calculation of GCD using above function */
#include<math.h>
#include<stdio.h>
main{)
{ int a, b;
printf (“Enter two numbers:”):;
scanf{“%d %d”, &a &b);
a = abs(a); /* if a is negative, convert it to positive */
b = abs(b);
printf{*\n The gcd of %d and %d is %d”, a,b,gcd(a.b)};

Output
Enter two numbers : 25 20
The gcd of 25 and 20 is 5

Note : abs is a function which returns the absolute value of its argument.

FRE] FUNCTION RETURNING A POINTER

A function can return a pointer to the calling function. The function header has to
be declared as

bbointer _ datatype * function_name (parameter list)]

Example:

i int *f1(int);
f1 is a function accepting an integer and returning pointer to an integer.

II. char *f2 (int *, int *); .
f2 is a function returning a pointer to datatype char and accepting the
addresses of two integer arguments in two integer pointers.

Examples

1. /* This program accepts the addresses of two integer variables and returns the
address of the larger variable to main */

#include<stdio.h>
main()
{
int *larger (int *, int*); /* prototype */
int nl, n2, *max;
printf (*Enter the two numbers : “);
scanf (*%d %d”, &nl,&n2);
max = larger (&nl, &n2);
printf (*\n The larger value is %d”, *max);

Principles of Programming and Algorithm 8 » 20 Functions

int *larger(int *ptrnl,int *ptrn2)
{
if (*ptrnl > * ptrn2)
return (ptrnl);
else
return (ptrn2);

Output
Enter the two numbers: 10 20
The larger value 1s 20.

EXxercises

A. Predict the output.

]

1.

main)

{ int 1;
for (1 = 1; i<=5; 1++)
{ printf(*%d~,i);

main();
3

}

2.

main()

{ int a = 10, b = 15;
change(a, &b);
printf (*%d4%d”, a,b);

}

change (int x, int *y)

{ x = 20;

*y = 30;

}

3.

main()

{ int 1 = abc(100) == 10;
printf (*%d”,1i);

}

abc(int n)
{ return (n/10);

}

Principles of Programming and Algorithm 8 »21 Functions

1.

main()}

{ abc(100,200)
}

abc(int n)
{ printf(*%d”,n);

}
5.
main()
{ int 1 = 5, j = 10;
abc(i,j):
printf(*i = 348", 1i);
printf(*\n j = %4", Jj);
}
abc{int i, int j)
{ 1= i+3;
j o= 1i-3;
i=i-3;
}
B. Programming Exercises
1. Write a function to calculate the roots of a quadratic equation.
2. Write a function that takes two integer parameters and returns the sum of all
integers between them.
3. Write a function power which accepts two integers x and y and returns x".
4. Write a function ctoi which accepts a character and returns its integer
equivalent if it is a digit and returns -1 otherwise.
Example: ctoi{ch) should return integer 5 if ch has value '5".
5. Write a recursive function to calculate and return the sum of digits of a number.
Example: Sum of digits of 397= 19.
6. Modify the above function such that the sum of digits is a single digit number.

Example: Sum of digits of 397 = 1

7. Write a recursive program to find the multiplication of two integers.

Principics of Programming and Algorithm 8 » 22 Functions

C. Review Questions

1. Define a function and illustrates how it works.
2. What are the advantages of using functions?
3. What are library and user defined functions?

4. What do you mean by a function prototype?

5. State the differcnt parts of a function? Explain the function header.
6. What are formal and actual parameters?
7. MHustrate with an example function declaration, function definition and

function call.
8. What is a local variable? Explain using examples.
9. Explain call by value and call by reference.
10. What is recursion? Explain with examples.
11, What is the meaning of the following declarations?
a. int f(float, char);
b. void g(int, int , int);

C. double h{void);

STORAGE CLASSES

9.1 MEANING OF TERMS

Every variable in a program has some memory associated with it. Memory for
variables is allocated and released at different points in the program.

The scope of a variable can be defined as the region or part of the program in
which the variable is visible or valid. Visible here also means accessible.

When speaking about scope, the term variable refers to all C data types: Simple
variables, arrays, structures, pointers, symbolic constants, etc.

Scope also affects a variables extent or lifetime.

Extent: This is the period of time during which memory is associated with a

variable. In other words, a variable lifetime is how long the variable persists in
memory.

Storage class refers to the manner in which memory is allocated by the compiler to
variables.

The storage class determines the scope and the lifetime of a variable.
Storage classes are:

e auto

e static

e extern

e register

We have written a number of programs - far and have not used any of these
classes as yet.

The reason that the previous programs compile and run is that if no class is
mentioned, a default storage class will be assigned depending upon the context in
which the variable is used.

g9 >1

Principles of Programming And Algorithm 9 »2 Storage Classes

9.2 SCOPE

A demonstration of Scope

Examples
)
== /* Illustration variable scope */

#include<stdio.h>

main()
{ int n = 5;
void display(void); /* function prototype */
printf (*\n %d”,n);
display!();
}
void display(void)
{
printf (*%d\n”,n) ;
. 0
L
Oulput

Compiler error: The variable n is defined within main and is visible only in
function main. It cannot be accessed in the function display.

We will now make a small modification to the above program.

<= /* Illustration variable scope */
#include<stdio.h>

int n = 5;

main()

{ void display (void); /* function prototype */
printf(*"\n %4”,n);
display ();

}

void display (void)

printf (*\n%d”,n);

Output

Principles of Programming And Algorithm 9>»3 Storage Classes

We have made a minor modification in the first program by moving the definition
of n outside main (). By doing so, we have changed its scope.

In Program 1, n is a local variable i.e. its scope is limited to the block where it is
defined.

In Program 2, n is a global (external) variable and its scope is the entire program.
9.2.1 Block Scope and File Scope
The scope of an identifier falls under two categories
1. Block scope (or locat scope)
2. File scope
Block Scope: An identifier s .1d to have local or block scope if it is defined within

a function or a block. It can be used only within that function or block. It cannot be
used outside. Such identifiers are called local identifiers.

File Scope: If an identifier is defined outside a function it can be used in any

function in the program i.e. it has a visibility over the entire file. Such identifiers are
called global identifiers.

Examples

/*Local and file scope */
#include<stdio.h>

int n = 20;

main())

{ int m = 10;
disp_values{()}

void disp_values()
{ printf(“%d %4”, m,n):;
i

In this program, variable n has file scope whereas m has block scope. n can be
used 1n any funclion in the file whereas m can only be used in function main because
it has been defined in main.

Advantages of Block Scope -
1. Data integrity is preserved since a function cannot access the data of another.
2. Only the necousary data can be passed to a function thus protecting the

remaining data.

Principles of Programming And Algorithm 9 >4 Storage Classes

Advantages of File Scope

1. If some common data is needed by all functions, passing it as parameters will
not be feasible. Making it global will be much easier.

2. Any changes made to the global data by a function can be seen and used by
other functions.

Disadvantages of File Scope

1. If too many variables are made global, they will remain in memory till program
execution is over. Thus, memory will remain allocated even when they are not
being used.

2. Any function can modify global data. Hence data cannot be protected.
9.3 STORAGE CLASSES

The storage class of a variable determines

1. where it is stored,

il. its default initial value,

iii. scope of the variable,

iv. lifetime of the variable,

We shall now study the four storage classes

9.3.1 Automatic Storage Class

This is the default storage class of variables that are declared within a function. All
the variables that we have studied in previous chapters belong to this class.

In order to explicitly declare a variable which belongs to this class, the keyword
auto is used.

Example:
auto int i;

This variable comes into existence only when the function (where it is defined) is
called and ceases to exist after the function is exited; hence termed automatic.

Features
1. Storage - Memory

2 Scope - Local to the block where it is defined. (Block scope)
3. Lifetime - It exists as long as control remains in the block where it is defined.
4 Default initial value - Garbage.

Principles of Prograrnming And Algorithm 9 »5 Storage Classes

[.]
‘Q‘ /*Hlustrate automatic variables*/
#include<stdio.h>

maini{)

{ auto int i1 = 10;

{
i

auto int 1 = 20;
printf (“"%d\n”,1i);
}
printf (*sd\n”,i);
}

Output
20
16

In this program, the two variables i are different variables since they are defined in
different blocks.

9.3.2 Extern Storage Class

Variables belonging to this class are also called as global variables or external
variables. They are declared outside all functions and are accessible to all the
functions 1n that source code file.

The variable n is a global variable, n is declared outside main() which makes it
accessible to all the functions in that file.

In some cases however, the program code may extend over two or more separate
files. In such a case, special handling is required for external variables.

Use of extern keyword

H the function uses an external variable, it is a good programming practice to
declare il again within the function using the extern keyword.

Syniox :
extern data_tvie var;
Example:

Program 2 in secuon .2 with changes will now be:

Principles of Programming And Algorithm 9 »6 Storage Classes

L)
=% » [llustrates external variables */

#include<stdio.h>

int n = 5 ; /* definition */
main ()

{

extern int n; /* declaration */

void display(void);
printf (*\n %d”,n);
display()}

void display(void)

{

extern int n ; /* declaration */
printcf (*\n%d”,n);

Note:

i. The declaration within the function indicates that the function uses an external
variable, which is defined elsewhere.

ii. If both these functions are in the same source code file, the declarations are not
required.

iii. If the variable n is to be used in functions written in separate source code files,
the declaration using the extern keyword is required.

Features
1. Storage - Memory
2. Scope - Filescope

3. Lifetime - It exists as long as the program which uses the variable is running.
It retains its value between functions.

4. Default - Initial value zero

Uses of global variables

i Use of global variable simplifies communication i.e. they need not be passed to
functions, (thereby making argument lists shorter) and any function can use

them whenever required.

il Symbolic constants are often declared globally.

Principles of Programming And Algorithm 9>»7 Storage Classes

Disadvantages

i By using external variables, the principles of modular programming i.e. data
1solation is violated.

1i. Even when not required, external variables persist in memory.

1. Variables can be changed in unexpected and inadvertent ways and it is difficult
' to keep track of the changes made thereby leading to problems.

9.3.3 Static Storage Class

Local variables are automatic by default, which means that every time the function
in which they are declared is called, they are created and destroyed when the
function ends. They do not retain their value between functions calls.

However, in many cases it is required that a variable retains its value between
function calls. This is possible if the variable is declared belonging to the static
storage class.

Syntax:

static data-type variable;

Example:

static int x;
static long factorial;

Types of static variables

1. Local static variables

These variables have block or function scope and they retain their value
between calls to the function.

2. Global static variables

They are global to the file in which they are defined. Unlike an ordinary
external variable, which is visible to all functions in the file and functions in
other files, a static external variable is visible only to functions in its own file.

Principles of Programming And Algorithm 9 »8 Storage Classes

s /* Illustration of local static variable and automatic variable */
#include<stdioc.h>

main)
{ int n
void increment (void) ;
for (n=l;n<=5; n++)
incrementi{);
b

void increment (void)

{
int lcount = 0 ; /* automatic variable */
static int scount = 0 ; /* static variable */
lcount++;
scount++;
printf(*\n lcount = %d scount = %d”, lcount, scount);
} =
Output
lcount = 1 scount = 1
lcount = 1 scount = 2
lcount = 1 scount = 3
lcount = 1 scount = 4
lcount = 1 scount = 5

The result shows that every time function increment is called lcount is created and

initialized to 0 whereas scount is initialized only once and its value persists between
function calls.

Features

1. Storage - Memory

2. Scope - Block or file scope depending upon where it is declared.
3. Lifetime - Persists between function calls if scope is block scope.
4. Default - Initial value zero.

9.3.4 Register Storage Class

The register keyword is used to tell the compiler to store the variable in a CPU
register rather than in main memory. The register variables have similar features as
the automatic storage class except for the storage location.

Principles of Programming And Algorithm 9 >»9 Storage Classes

@dvantages of register variables

The CPU has its own limited storage locations, which it uses for actual data
operations. These locations are called registers. To manipulate data and perform
operations, the CPU moves data back and forth between the memory and registers,
which takes a finite amount of time.

Thus, if a particular variable is kept in the register itself, the CPU can access it
faster. Hence, variables, which are heavily used, may be declared of this type so that
execution is faster.

Syntax:
register data_type variable;

Example:
register int i;
register char ch;

Limitations

1. There are only a limited number of registers in the CPU. So, a register may not
be available for the variable. In such a case, the variable is treated as an
ordinary automatic variable.

il Most compilers allow this storage class to be used only with integer data type.
(int or char)

iii. The unary & operator (address of) cannot be used with these variables either
explicitly or implicitly.

iv. It cannot be used with either static or external storage classes.

V. It cannot be used for structures, arrays or unions.

Features

1. Storage - CPU registers

2 Scope - Block scope

3. Lifetime - Exists as long as control is within the block where it is defined
4 Default initial - value-garbage

Storage Classes

Remarks

Are initialized only once,Values '

retained through function calls,
default initial value is zero.

If they are to be used in multiple
files, they have to be declared in
each function using the extern
keyword. Initialization can be

done only once-outside the

functions.

limited number of registers,
restriction on the type of
variables, cannot use pointers
for register variabies, no default
value

Variable is initialized each time
the function / block is entered, no
default value. Does not exist
outside function block where
declared.

Principles of Programming And Algorithm 9 >» 10
9.3.5 Summary
The following table summarizes the storage classes, scope and initializations.
Storage ; . -
Class Variable is declared Visibility
Outside a function anywhere within_the
Static e
Inside a function block | Function/Block Scope
Extern Outside a function ar;ywhere within the
Register | Inside a function/block | Function/block scope
Function / block
Auto Inside a function/block | scope i.e. local to the
function/block
ercise
A. Predict the Outputs
1.
main()
{ int i;
i = abc();
printf (*%d...";1i);
i = abc();
printf (*%d”,i);
}

static int abc{()

{

int 1 = 1;
return i++;

Principles of Programming And Algorithm 9 > 11 - Storage Classes
2.
extern int 1i;
main{)
{ printf(*%d“,1i);
}

3.

static int 1 = 100;

main()

{ static int i = 200;
abc () ;
printf{*%d”,i);

}

abc()

{ printf(*sd..", 1i):

}

4.

/* File aa.c */
int a = 100;

/* File bb.c */
#include ‘“aa.c”
extern int a;
main{)

{ printf (“%d4”,a):
}

B. Review Questions
1. What do the following terms mean?
a. Scope
b. Extent
C. Storage class
2. What do you mean by block scope and [ile scope? Explain with examples.
3. What is meant by the storage class of a variable? Name the different storage

classes in C.
4. What is meant by local variables?

5. Distinguish between local and global variables.

Principles of Programming And Algorithm 9 »12 Storage Classes

10.

11.

12.

13.

14.

What are static variables? What are the two types of static variables?
Differentiate between automatic and static storage classes.

What is the purpose of the extern keyword?

What values does an un-initialized global variable contain?

What do you understand by block scope of a variable? How does nested blocks
affect its accessibility?

What are the advantages and limitations of the register storage class?
When is the register storage class most useful?
Discuss the different storage classes in C.

Write two differences between auto and static variables.

Suggestive Readings

ADAMS, G.B. IIll, AGRAWAL, D.P., And SIEGEL, H.J.: *° A Survey And Comparison
Of Faulttolerant Multistage Interconnection Networks,”” Computer, Vol. 20, Pp. 14-27,
June 1987.

ADAMS, K., And AGESEN, O.: ‘“ A Comparison Of Software And Hardware Technqiues
For X86 Virtualization,”” Proc. 12th Int’l Conf. On Arc H. Support For Prog. Lang. And
Operating Systems, ACM, Pp. 2—13, 2006.

AGESEN, O., MATTSON, J., RUGINA, R., And SHELDON, J.: ‘‘Software Techniques
For Av Oiding Hardware Virtualization Exits,”” Proc. USENIX Ann. Tech. Conf.,
USENIX, 2012.

AHMAD, I.: ““Gigantic Clusters: Where Are They And What Are They Doing?’’ IEEE
Concurrency, Vol. 8, Pp. 83-85, April-June 2000.

AHN, B.-S., SOHN, S.-H., KIM, S.-Y., CHA, G.-1., BAEK, Y.-C., JUNG, S.-I., And KIM,
M.-J.: “‘Implementation And Evaluation Of EXT3NS Multimedia File System,’” Proc.
12th Ann. Int’l Conf. On Multimedia, ACM, Pp. 588-595, 2004.

ALBATH, J.,, THAKUR, M., And MADRIA, S.: ““Energy Constraint Clustering
Algorithms For Wireless Sensor Networks,’” J. Ad Hoc Networks, Vol. 11, Pp. 2512-2525,
Nov. 2013.

AMSDEN, Z., ARAIL, D., HECHT, D., HOLLER, A., And SUBRAHMANYAM, P.:
“VMI: An Interface For Paravirtualization,”” Proc. 2006 Linux Symp., 2006.
ANDERSON, D.: SATA Storage Technology: Serial ATA, Mindshare, 2007.
ANDERSON, R.: Security Engineering, 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2008.
ANDERSON, T.E.: ““The Performance Of Spin Lock Alternatives For Shared-Memory
Multiprocessors,”” IEEE Trans. On Parallel And Distr. Systems, Vol. 1, Pp. 6-16, Jan.
1990.

ANDERSON, T.E., BERSHAD, B.N., LAZOWSKA, E.D., And LEVY, HM.:
““Scheduler Activations: Effective Kernel Support For The User-Level Management Of
Parallelism,”” Acmtrans. On Computer Systems, Vol. 10, Pp. 53-79, Feb. 1992.
ANDREWS, G.R.: Concurrent Programming—Principles And Practice, Redwood City,
CA: Benjamin/Cummings, 1991.

ANDREWS, G.R., And SCHNEIDER, F.B.: ““Concepts And Notations For Concurrent
Programming,”” Computing Surveys, Vol. 15, Pp. 3-43, March 1983.

APPUSWAMY ,R., VAN MOOLENBROEK, D.C., And TANENBAUM, A.S.: “‘Flexible,
Modular File Volume Virtualization In Loris,”” Proc. 27th Symp. On Mass Storage
Systems And Tech., IEEE, Pp. 1-14, 2011.

ARNAB, A., And HUTCHISON, A.: “‘Piracy And Content Protection In The Broadband
Age,” Proc. S. African Telecomm. Netw. And Appl. Conf, 2006.

ARON, M., And DRUSCHEL, P.: “‘Soft Timers: Efficient Microsecond Software Timer
Support For Network Processing,”” Proc. 17th Symp. On Operating Systems Principles,
ACM, Pp. 223-246, 1999.

ARPACI-DUSSEAU, R. And ARPACI-DUSSEAU, A.: Operating Systems: Three Easy
Pieces, Madison, WI: Arpacci-Dusseau, 2013.

BRATUS, S., LOCASTO, M.E., PATTERSON, M., SASSAMAN, L., SHUBINA, A.:
“From Buffer Overflows To Weird Machines And Theory Of Computation,’’ ;Login:,
USENIX, Pp. 11-21, December 2011.

BRINCH HANSEN, P.: ““The Programming Language Concurrent Pascal,”” IEEE Trans.
On Software Engineering, Vol. SE-1, Pp. 199-207, June 1975.

BROOKS, F.P., Jr.: ““No Silver Bullet—Essence And Accident In Software Engineering,’’
Computer, Vol. 20, Pp. 10-19, April 1987.

BROOKS, F.P., Jr.: The Mythical Man-Month: Essays On Software Engineering, 20th
Anniversary Edition, Boston: Addison-Wesley, 1995.

BRUSCHI, D., MARTIGNONI, L., And MONGA, M.: ‘“Code Normalization For Self-
Mutating Malware,”’ IEEE Security And Privacy, Vol. 5, Pp. 46-54, March/April 2007.
BUGNION, E., DEVINE, S., GOVIL, K., And ROSENBLUM, M.: ‘““Disco: Running
Commodity Operating Systems On Scalable Multiprocessors,”” ACM Trans. On Computer
Systems, Vol. 15, Pp. 412447, Nov. 1997.

BUGNION, E., DEVINE, S., ROSENBLUM, M., SUGERMAN, J., And WANG, E.:
““Bringing Virtualization To The X86 Architecture With The Original Vmware
Workstation,”” ACM Tr Ans. On Computer Systems, Vol. 30, Number 4, Pp.12:1-12:51,
Nov. 2012.

BULPIN, J.R., And PRATT, L[A.. ‘‘Hyperthreading-Aware Process Scheduling
Heuristics,”” Proc. USENIX Ann. Tech. Conf., USENIX, Pp. 399-403, 2005.

CALJ., And STRAZDINS, P.E.: ““ An Accurate Prefetch Technique For Dynamic Paging
Behaviour For Software Distributed Shared Memory,”” Proc. 41st Int’l Conf. On Parallel
Processing, IEEE., Pp. 209-218, 2012.

CAL Y., And CHAN, W.K.: ‘“Magicfuzzer: Scalable Deadlock Detection For Large-Scale
Applications,’’ Proc. 2012 Int’] Conf. On Software Engineering, IEEE, Pp. 606-616, 2012.
CAMPISI, P.: Security And Privacy In Biometrics, New York: Springer, 2013.
CARPENTER, M., LISTON, T., And SKOUDIS, E.: ‘‘Hiding Virtualization From
Attackers And Malware,”’ IEEE Security And Privacy, Vol. 5, Pp. 62—65, May/June 2007.
CARR, R.W., And HENNESSY, J.L.: ““Wsclock—A Simple And Effective Algorithm For
Virtual Memory Management,”” Proc. Eighth Symp. On Operating Systems Principles,
ACM, Pp. 87-95, 1981.

CARRIERO, N., And GELERNTER, D.: ““The S/Net’s Linda Kernel,”” ACM Trans. On
Computer Systems, Vol. 4, Pp. 110-129, May 1986.

CARRIERO, N., And GELERNTER, D.: “‘Linda In Context,”” Commun. Of The ACM,
Vol. 32, Pp. 444-458, April 1989.

CERF, C., And NAV ASKY, V.: The Experts Speak, New York: Random House, 1984.
CHEN, M.-S., YANG, B.-Y., And CHENG, C.-M.: ‘‘Raidq: A Software-Friendly,
Multipleparity RAID,’” Proc. Fifth Workshop On Hot Topics In File And Storage Systems,
USENIX, 2013.

	9c940210a83487ba20f1ade5a6baae8abb2b131cf4094bd5a97312f9814cec16.pdf
	3090285c1e0fd5a4126550f232a648bbb06ce2aa944683a2dece9aa825d4b814.pdf
	Microsoft Word - Syllabus PPA
	9c940210a83487ba20f1ade5a6baae8abb2b131cf4094bd5a97312f9814cec16.pdf
	Microsoft Word - Ref PPA

